These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

642 related articles for article (PubMed ID: 17542633)

  • 1. Nonleaching antimicrobial films prepared from surface-modified microfibrillated cellulose.
    Andresen M; Stenstad P; Møretrø T; Langsrud S; Syverud K; Johansson LS; Stenius P
    Biomacromolecules; 2007 Jul; 8(7):2149-55. PubMed ID: 17542633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contact Antimicrobial Surface Obtained by Chemical Grafting of Microfibrillated Cellulose in Aqueous Solution Limiting Antibiotic Release.
    Saini S; Belgacem N; Mendes J; Elegir G; Bras J
    ACS Appl Mater Interfaces; 2015 Aug; 7(32):18076-85. PubMed ID: 26218855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and antibacterial activity of 5- and 6-hydroxy substituted 4-aminoquinolines and derivatives.
    Meyer T; Lemcke T; Geffken D; Kaulfers PM
    Pharmazie; 2001 Sep; 56(9):691-5. PubMed ID: 11593987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of hydrolysis degree on the properties of antibacterial polymeric films based on poly(vinyl alcohol) and zinc sulphate for biomedical applications.
    Sedlarik V; Galya T; Sedlarikova J; Valasek P; Saha P
    J Biomater Sci Polym Ed; 2010; 21(11):1421-40. PubMed ID: 20534194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antibacterial cellulose fiber via RAFT surface graft polymerization.
    Roy D; Knapp JS; Guthrie JT; Perrier S
    Biomacromolecules; 2008 Jan; 9(1):91-9. PubMed ID: 18067264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly effective contact antimicrobial surfaces via polymer surface modifiers.
    Kurt P; Wood L; Ohman DE; Wynne KJ
    Langmuir; 2007 Apr; 23(9):4719-23. PubMed ID: 17388618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Durable contact active antimicrobial materials formed by a one-step covalent modification of polyvinyl alcohol, cellulose and glass surfaces.
    Poverenov E; Shemesh M; Gulino A; Cristaldi DA; Zakin V; Yefremov T; Granit R
    Colloids Surf B Biointerfaces; 2013 Dec; 112():356-61. PubMed ID: 24012705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antibacterial properties of an in situ generated and simultaneously deposited nanocrystalline ZnO on fabrics.
    Perelshtein I; Applerot G; Perkas N; Wehrschetz-Sigl E; Hasmann A; Guebitz GM; Gedanken A
    ACS Appl Mater Interfaces; 2009 Feb; 1(2):361-6. PubMed ID: 20353224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasma-enhanced synthesis of bactericidal quaternary ammonium thin layers on stainless steel and cellulose surfaces.
    Jampala SN; Sarmadi M; Somers EB; Wong AC; Denes FS
    Langmuir; 2008 Aug; 24(16):8583-91. PubMed ID: 18646726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled release and antibacterial activity chlorhexidine acetate (CA) intercalated in montmorillonite.
    Meng N; Zhou NL; Zhang SQ; Shen J
    Int J Pharm; 2009 Dec; 382(1-2):45-9. PubMed ID: 19666092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel Cu@SiO2/bacterial cellulose nanofibers: Preparation and excellent performance in antibacterial activity.
    Ma B; Huang Y; Zhu C; Chen C; Chen X; Fan M; Sun D
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():656-61. PubMed ID: 26952469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New photoantimicrobial films composed of porphyrinated lipophilic cellulose esters.
    Krouit M; Granet R; Branland P; Verneuil B; Krausz P
    Bioorg Med Chem Lett; 2006 Mar; 16(6):1651-5. PubMed ID: 16377183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antibacterial activity of some unsymmetrical diorganyltellurium(IV) dichlorides.
    Soni D; Gupta PK; Kumar Y; Chandrashekhar TG
    Indian J Biochem Biophys; 2005 Dec; 42(6):398-400. PubMed ID: 16955743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of novel organovermiculites with antibacterial activity using chlorhexidine diacetate.
    Holesová S; Valásková M; Plevová E; Pazdziora E; Matejová K
    J Colloid Interface Sci; 2010 Feb; 342(2):593-7. PubMed ID: 19931868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antibacterial neoclerodane diterpenoids from Ajuga lupulina.
    Chen H; Tan RX; Liu ZL; Zhang Y; Yang L
    J Nat Prod; 1996 Jul; 59(7):668-70. PubMed ID: 8759163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antibacterial multilayer films fabricated by layer-by-layer immobilizing lysozyme and gold nanoparticles on nanofibers.
    Zhou B; Li Y; Deng H; Hu Y; Li B
    Colloids Surf B Biointerfaces; 2014 Apr; 116():432-8. PubMed ID: 24534432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bio-active nanocomposite films based on nanocrystalline cellulose reinforced styrylquinoxalin-grafted-chitosan: Antibacterial and mechanical properties.
    Fardioui M; Meftah Kadmiri I; Qaiss AEK; Bouhfid R
    Int J Biol Macromol; 2018 Jul; 114():733-740. PubMed ID: 29588206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of antimicrobial additives on the formation of rosin nanofibers via electrospinning.
    Nirmala R; Woo-il B; Navamathavan R; Kalpana D; Lee YS; Kim HY
    Colloids Surf B Biointerfaces; 2013 Apr; 104():262-7. PubMed ID: 23333914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface cationized cellulose nanofibrils for the production of contact active antimicrobial surfaces.
    Saini S; Yücel Falco Ç; Belgacem MN; Bras J
    Carbohydr Polym; 2016 Jan; 135():239-47. PubMed ID: 26453874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial adhesion inhibition of the quaternary ammonium functionalized silica nanoparticles.
    Song J; Kong H; Jang J
    Colloids Surf B Biointerfaces; 2011 Feb; 82(2):651-6. PubMed ID: 21115282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.