These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration. Boyero L; Pearson RG; Gessner MO; Barmuta LA; Ferreira V; Graça MA; Dudgeon D; Boulton AJ; Callisto M; Chauvet E; Helson JE; Bruder A; Albariño RJ; Yule CM; Arunachalam M; Davies JN; Figueroa R; Flecker AS; Ramírez A; Death RG; Iwata T; Mathooko JM; Mathuriau C; Gonçalves JF; Moretti MS; Jinggut T; Lamothe S; M'Erimba C; Ratnarajah L; Schindler MH; Castela J; Buria LM; Cornejo A; Villanueva VD; West DC Ecol Lett; 2011 Mar; 14(3):289-94. PubMed ID: 21299824 [TBL] [Abstract][Full Text] [Related]
5. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Sayer EJ Biol Rev Camb Philos Soc; 2006 Feb; 81(1):1-31. PubMed ID: 16460580 [TBL] [Abstract][Full Text] [Related]
6. Global-scale similarities in nitrogen release patterns during long-term decomposition. Parton W; Silver WL; Burke IC; Grassens L; Harmon ME; Currie WS; King JY; Adair EC; Brandt LA; Hart SC; Fasth B Science; 2007 Jan; 315(5810):361-4. PubMed ID: 17234944 [TBL] [Abstract][Full Text] [Related]
7. Changing leaf litter feedbacks on plant production across contrasting sub-arctic peatland species and growth forms. Dorrepaal E; Cornelissen JH; Aerts R Oecologia; 2007 Mar; 151(2):251-61. PubMed ID: 17089140 [TBL] [Abstract][Full Text] [Related]
8. Microcosm tests of the effects of temperature and microbial species number on the decomposition of Carex aquatilis and Sphagnum fuscum litter from southern boreal peatlands. Thormann MN; Bayley SE; Currah RS Can J Microbiol; 2004 Oct; 50(10):793-802. PubMed ID: 15644893 [TBL] [Abstract][Full Text] [Related]
9. Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Elmendorf SC; Henry GH; Hollister RD; Björk RG; Bjorkman AD; Callaghan TV; Collier LS; Cooper EJ; Cornelissen JH; Day TA; Fosaa AM; Gould WA; Grétarsdóttir J; Harte J; Hermanutz L; Hik DS; Hofgaard A; Jarrad F; Jónsdóttir IS; Keuper F; Klanderud K; Klein JA; Koh S; Kudo G; Lang SI; Loewen V; May JL; Mercado J; Michelsen A; Molau U; Myers-Smith IH; Oberbauer SF; Pieper S; Post E; Rixen C; Robinson CH; Schmidt NM; Shaver GR; Stenström A; Tolvanen A; Totland O; Troxler T; Wahren CH; Webber PJ; Welker JM; Wookey PA Ecol Lett; 2012 Feb; 15(2):164-75. PubMed ID: 22136670 [TBL] [Abstract][Full Text] [Related]
10. Transient floral change and rapid global warming at the Paleocene-Eocene boundary. Wing SL; Harrington GJ; Smith FA; Bloch JI; Boyer DM; Freeman KH Science; 2005 Nov; 310(5750):993-6. PubMed ID: 16284173 [TBL] [Abstract][Full Text] [Related]
11. Effects of arctic shrub expansion on biophysical vs. biogeochemical drivers of litter decomposition. DeMarco J; Mack MC; Bret-Harte MS Ecology; 2014 Jul; 95(7):1861-75. PubMed ID: 25163119 [TBL] [Abstract][Full Text] [Related]
12. The ecology of saprophagous macroarthropods (millipedes, woodlice) in the context of global change. David JF; Handa IT Biol Rev Camb Philos Soc; 2010 Nov; 85(4):881-95. PubMed ID: 20412191 [TBL] [Abstract][Full Text] [Related]
13. Variation among biomes in temporal dynamics of aboveground primary production. Knapp AK; Smith MD Science; 2001 Jan; 291(5503):481-4. PubMed ID: 11161201 [TBL] [Abstract][Full Text] [Related]
14. Decoupling the direct and indirect effects of climate on plant litter decomposition: Accounting for stress-induced modifications in plant chemistry. Suseela V; Tharayil N Glob Chang Biol; 2018 Apr; 24(4):1428-1451. PubMed ID: 28986956 [TBL] [Abstract][Full Text] [Related]
15. Convergent ecosystem responses to 23-year ambient and manipulated warming link advancing snowmelt and shrub encroachment to transient and long-term climate-soil carbon feedback. Harte J; Saleska SR; Levy C Glob Chang Biol; 2015 Jun; 21(6):2349-56. PubMed ID: 25504893 [TBL] [Abstract][Full Text] [Related]
16. Genotypic trait variation modifies effects of climate warming and nitrogen deposition on litter mass loss and microbial respiration. Hines J; Reyes M; Mozder TJ; Gessner MO Glob Chang Biol; 2014 Dec; 20(12):3780-9. PubMed ID: 25099691 [TBL] [Abstract][Full Text] [Related]
17. Shrub encroachment in Arctic tundra: Betula nana effects on above- and belowground litter decomposition. McLaren JR; Buckeridge KM; van de Weg MJ; Shaver GR; Schimel JP; Gough L Ecology; 2017 May; 98(5):1361-1376. PubMed ID: 28263375 [TBL] [Abstract][Full Text] [Related]
18. Interactive effects of solar UV radiation and climate change on biogeochemical cycling. Zepp RG; Erickson DJ; Paul ND; Sulzberger B Photochem Photobiol Sci; 2007 Mar; 6(3):286-300. PubMed ID: 17344963 [TBL] [Abstract][Full Text] [Related]
19. Climate feedbacks at the tundra-taiga interface. Harding R; Kuhry P; Christensen TR; Sykes MT; Dankers R; van der Linden S Ambio; 2002 Aug; Spec No 12():47-55. PubMed ID: 12374059 [TBL] [Abstract][Full Text] [Related]
20. Carbon and nitrogen cycles in European ecosystems respond differently to global warming. Beier C; Emmett BA; Peñuelas J; Schmidt IK; Tietema A; Estiarte M; Gundersen P; Llorens L; Riis-Nielsen T; Sowerby A; Gorissen A Sci Total Environ; 2008 Dec; 407(1):692-7. PubMed ID: 18930514 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]