These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 17543821)

  • 1. Understanding how opioids contribute to reward and analgesia.
    Fields HL
    Reg Anesth Pain Med; 2007; 32(3):242-6. PubMed ID: 17543821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feeding-modulatory effects of mu-opioids in the medial prefrontal cortex: a review of recent findings and comparison to opioid actions in the nucleus accumbens.
    Selleck RA; Baldo BA
    Psychopharmacology (Berl); 2017 May; 234(9-10):1439-1449. PubMed ID: 28054099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endogenous opioid peptides acting at mu-opioid receptors in the dorsal horn contribute to midbrain modulation of spinal nociceptive neurons.
    Budai D; Fields HL
    J Neurophysiol; 1998 Feb; 79(2):677-87. PubMed ID: 9463431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The opioid systems--panacea and nemesis.
    Terenius L; Johansson B
    Biochem Biophys Res Commun; 2010 May; 396(1):140-2. PubMed ID: 20494127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of μ- and δ-opioid receptor function in the rewarding effect of (±)-pentazocine.
    Mori T; Itoh T; Yoshizawa K; Ise Y; Mizuo K; Saeki T; Komiya S; Masukawa D; Shibasaki M; Suzuki T
    Addict Biol; 2015 Jul; 20(4):724-32. PubMed ID: 25065832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding opioid reward.
    Fields HL; Margolis EB
    Trends Neurosci; 2015 Apr; 38(4):217-25. PubMed ID: 25637939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Receptor Reserve Moderates Mesolimbic Responses to Opioids in a Humanized Mouse Model of the OPRM1 A118G Polymorphism.
    Robinson JE; Vardy E; DiBerto JF; Chefer VI; White KL; Fish EW; Chen M; Gigante E; Krouse MC; Sun H; Thorsell A; Roth BL; Heilig M; Malanga CJ
    Neuropsychopharmacology; 2015 Oct; 40(11):2614-22. PubMed ID: 25881115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pharmacological evidence for the mediation of the panicolytic effect of fluoxetine by dorsal periaqueductal gray matter μ-opioid receptors.
    Roncon CM; Almada RC; Maraschin JC; Audi EA; Zangrossi H; Graeff FG; Coimbra NC
    Neuropharmacology; 2015 Dec; 99():620-6. PubMed ID: 26320545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Regional and Projection-Specific Role of RGSz1 in the Ventrolateral Periaqueductal Grey in the Modulation of Morphine Reward.
    Sakloth F; Sanchez-Reyes OB; Ruiz A; Nicolais A; Serafini RA; Pryce KD; Bertherat F; Torres-Berrío A; Gomes I; Devi LA; Wacker D; Zachariou V
    Mol Pharmacol; 2023 Jan; 103(1):1-8. PubMed ID: 36310031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discrete neurochemical coding of distinguishable motivational processes: insights from nucleus accumbens control of feeding.
    Baldo BA; Kelley AE
    Psychopharmacology (Berl); 2007 Apr; 191(3):439-59. PubMed ID: 17318502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endogenous opiates and behavior: 2014.
    Bodnar RJ
    Peptides; 2016 Jan; 75():18-70. PubMed ID: 26551874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altered Signaling in the Descending Pain-modulatory System after Short-Term Infusion of the μ-Opioid Agonist Remifentanil.
    Sprenger C; Eichler IC; Eichler L; Zöllner C; Büchel C
    J Neurosci; 2018 Mar; 38(10):2454-2470. PubMed ID: 29440535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphine can produce analgesia via spinal kappa opioid receptors in the absence of mu opioid receptors.
    Yamada H; Shimoyama N; Sora I; Uhl GR; Fukuda Y; Moriya H; Shimoyama M
    Brain Res; 2006 Apr; 1083(1):61-9. PubMed ID: 16530171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Opioid pharmaceuticals and addiction: the issues, and research directions seeking solutions.
    Walwyn WM; Miotto KA; Evans CJ
    Drug Alcohol Depend; 2010 May; 108(3):156-65. PubMed ID: 20188495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Panicolytic-like action of bradykinin in the dorsal periaqueductal gray through μ-opioid and B2-kinin receptors.
    Sestile CC; Maraschin JC; Gama VS; Zangrossi H; Graeff FG; Audi EA
    Neuropharmacology; 2017 Sep; 123():80-87. PubMed ID: 28554847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional interaction between TRPV1 and mu-opioid receptors in the descending antinociceptive pathway activates glutamate transmission and induces analgesia.
    Maione S; Starowicz K; Cristino L; Guida F; Palazzo E; Luongo L; Rossi F; Marabese I; de Novellis V; Di Marzo V
    J Neurophysiol; 2009 May; 101(5):2411-22. PubMed ID: 19297510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alterations in food intake by opioid and dopamine signaling pathways between the ventral tegmental area and the shell of the nucleus accumbens.
    MacDonald AF; Billington CJ; Levine AS
    Brain Res; 2004 Aug; 1018(1):78-85. PubMed ID: 15262208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mouse model of OPRM1 (A118G) polymorphism increases sociability and dominance and confers resilience to social defeat.
    Briand LA; Hilario M; Dow HC; Brodkin ES; Blendy JA; Berton O
    J Neurosci; 2015 Feb; 35(8):3582-90. PubMed ID: 25716856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Opioid agonist efficacy predicts the magnitude of tolerance and the regulation of mu-opioid receptors and dynamin-2.
    Pawar M; Kumar P; Sunkaraneni S; Sirohi S; Walker EA; Yoburn BC
    Eur J Pharmacol; 2007 Jun; 563(1-3):92-101. PubMed ID: 17349996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endogenous opioid peptides in the descending pain modulatory circuit.
    Bagley EE; Ingram SL
    Neuropharmacology; 2020 Aug; 173():108131. PubMed ID: 32422213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.