BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

539 related articles for article (PubMed ID: 17544228)

  • 41. Quantitative identification of senescent cells in aging and disease.
    Biran A; Zada L; Abou Karam P; Vadai E; Roitman L; Ovadya Y; Porat Z; Krizhanovsky V
    Aging Cell; 2017 Aug; 16(4):661-671. PubMed ID: 28455874
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Linking Aging to Cancer: The Role of Chromatin Biology.
    Corveleyn L; Sen P; Adams P; Sidoli S
    J Gerontol A Biol Sci Med Sci; 2024 Jul; 79(7):. PubMed ID: 38761362
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pak2 kinase promotes cellular senescence and organismal aging.
    Lee JS; Mo Y; Gan H; Burgess RJ; Baker DJ; van Deursen JM; Zhang Z
    Proc Natl Acad Sci U S A; 2019 Jul; 116(27):13311-13319. PubMed ID: 31209047
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Jumonji C Demethylases in Cellular Senescence.
    Leon KE; Aird KM
    Genes (Basel); 2019 Jan; 10(1):. PubMed ID: 30634491
    [TBL] [Abstract][Full Text] [Related]  

  • 45. LSD1 promotes S-phase entry and tumorigenesis via chromatin co-occupation with E2F1 and selective H3K9 demethylation.
    He Y; Zhao Y; Wang L; Bohrer LR; Pan Y; Wang L; Huang H
    Oncogene; 2018 Jan; 37(4):534-543. PubMed ID: 28991226
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Beyond SAHF: An integrative view of chromatin compartmentalization during senescence.
    Olan I; Handa T; Narita M
    Curr Opin Cell Biol; 2023 Aug; 83():102206. PubMed ID: 37451177
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Stressing the cell cycle in senescence and aging.
    Chandler H; Peters G
    Curr Opin Cell Biol; 2013 Dec; 25(6):765-71. PubMed ID: 23916530
    [TBL] [Abstract][Full Text] [Related]  

  • 48. 4D Genome Rewiring during Oncogene-Induced and Replicative Senescence.
    Sati S; Bonev B; Szabo Q; Jost D; Bensadoun P; Serra F; Loubiere V; Papadopoulos GL; Rivera-Mulia JC; Fritsch L; Bouret P; Castillo D; Gelpi JL; Orozco M; Vaillant C; Pellestor F; Bantignies F; Marti-Renom MA; Gilbert DM; Lemaitre JM; Cavalli G
    Mol Cell; 2020 May; 78(3):522-538.e9. PubMed ID: 32220303
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Detecting Markers of Therapy-Induced Senescence in Cancer Cells.
    Fan DN; Schmitt CA
    Methods Mol Biol; 2017; 1534():41-52. PubMed ID: 27812866
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Old cells, new tricks: chromatin structure in senescence.
    Parry AJ; Narita M
    Mamm Genome; 2016 Aug; 27(7-8):320-31. PubMed ID: 27021489
    [TBL] [Abstract][Full Text] [Related]  

  • 51. MRGing chromatin dynamics and cellular senescence.
    Garcia SN; Pereira-Smith O
    Cell Biochem Biophys; 2008; 50(3):133-41. PubMed ID: 18231726
    [TBL] [Abstract][Full Text] [Related]  

  • 52. HMGB2 orchestrates the chromatin landscape of senescence-associated secretory phenotype gene loci.
    Aird KM; Iwasaki O; Kossenkov AV; Tanizawa H; Fatkhutdinov N; Bitler BG; Le L; Alicea G; Yang TL; Johnson FB; Noma KI; Zhang R
    J Cell Biol; 2016 Nov; 215(3):325-334. PubMed ID: 27799366
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chromatin modification and senescence: linkage by tumor suppressors?
    Han X; Berardi P; Riabowol K
    Rejuvenation Res; 2006; 9(1):69-76. PubMed ID: 16608399
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Senescence Phenotypes Induced by Ras in Primary Cells.
    Lau L; David G
    Methods Mol Biol; 2017; 1534():17-30. PubMed ID: 27812864
    [TBL] [Abstract][Full Text] [Related]  

  • 55. HP1 proteins are essential for a dynamic nuclear response that rescues the function of perturbed heterochromatin in primary human cells.
    Zhang R; Liu ST; Chen W; Bonner M; Pehrson J; Yen TJ; Adams PD
    Mol Cell Biol; 2007 Feb; 27(3):949-62. PubMed ID: 17101789
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Higher-order unfolding of satellite heterochromatin is a consistent and early event in cell senescence.
    Swanson EC; Manning B; Zhang H; Lawrence JB
    J Cell Biol; 2013 Dec; 203(6):929-42. PubMed ID: 24344186
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Histone Code of Senescence.
    Paluvai H; Di Giorgio E; Brancolini C
    Cells; 2020 Feb; 9(2):. PubMed ID: 32085582
    [TBL] [Abstract][Full Text] [Related]  

  • 58. JMJD3 promotes SAHF formation in senescent WI38 cells by triggering an interplay between demethylation and phosphorylation of RB protein.
    Zhao L; Zhang Y; Gao Y; Geng P; Lu Y; Liu X; Yao R; Hou P; Liu D; Lu J; Huang B
    Cell Death Differ; 2015 Oct; 22(10):1630-40. PubMed ID: 25698448
    [TBL] [Abstract][Full Text] [Related]  

  • 59. H2B ubiquitylation and the histone chaperone Asf1 cooperatively mediate the formation and maintenance of heterochromatin silencing.
    Wu MY; Lin CY; Tseng HY; Hsu FM; Chen PY; Kao CF
    Nucleic Acids Res; 2017 Aug; 45(14):8225-8238. PubMed ID: 28520954
    [TBL] [Abstract][Full Text] [Related]  

  • 60. ATRX is a regulator of therapy induced senescence in human cells.
    Kovatcheva M; Liao W; Klein ME; Robine N; Geiger H; Crago AM; Dickson MA; Tap WD; Singer S; Koff A
    Nat Commun; 2017 Aug; 8(1):386. PubMed ID: 28855512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.