BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 17544307)

  • 1. Reductive inactivation of yeast glutathione reductase by Fe(II) and NADPH.
    Cardoso LA; Ferreira ST; Hermes-Lima M
    Comp Biochem Physiol A Mol Integr Physiol; 2008 Nov; 151(3):313-321. PubMed ID: 17544307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metals are directly involved in the redox interconversion of Saccharomyces cerevisiae glutathione reductase.
    Peinado J; Florindo J; García-Alfonso C; Martínez-Galisteo E; Llobell A; López-Barea J
    Mol Cell Biochem; 1991 Mar; 101(2):175-87. PubMed ID: 1861675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The redox interconversion mechanism of Saccharomyces cerevisiae glutathione reductase.
    Pinto MC; Mata AM; López-Barea J
    Eur J Biochem; 1985 Sep; 151(2):275-81. PubMed ID: 3896786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible inactivation of Saccharomyces cerevisiae glutathione reductase under reducing conditions.
    Pinto MC; Mata AM; Lopez-Barea J
    Arch Biochem Biophys; 1984 Jan; 228(1):1-12. PubMed ID: 6364985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutathione reductase from Saccharomyces cerevisiae undergoes redox interconversion in situ and in vivo.
    Peinado J; Florindo J; López-Barea J
    Mol Cell Biochem; 1992 Mar; 110(2):135-43. PubMed ID: 1584202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox interconversion of Escherichia coli glutathione reductase. A study with permeabilized and intact cells.
    Mata AM; Pinto MC; López-Barea J
    Mol Cell Biochem; 1985 Oct; 68(2):121-30. PubMed ID: 3908906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cold-hardiness-specific glutathione reductase isozymes in red spruce. Thermal dependence of kinetic parameters and possible regulatory mechanisms.
    Hausladen A; Alscher RG
    Plant Physiol; 1994 May; 105(1):215-23. PubMed ID: 8029351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox interconversion of glutathione reductase from Escherichia coli. A study with pure enzyme and cell-free extracts.
    Mata AM; Pinto MC; López-Barea J
    Mol Cell Biochem; 1985 May; 67(1):65-76. PubMed ID: 3894932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of glutathione reductase with heavy metal: the binding of Hg(II) or Cd(II) to the reduced enzyme affects both the redox dithiol pair and the flavin.
    Picaud T; Desbois A
    Biochemistry; 2006 Dec; 45(51):15829-37. PubMed ID: 17176105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inactivation of yeast glutathione reductase by Fenton systems: effect of metal chelators, catecholamines and thiol compounds.
    Gutierrez-Correa J; Stoppani AO
    Free Radic Res; 1997 Dec; 27(6):543-55. PubMed ID: 9455690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox activation of Fe(III)-thiosemicarbazones and Fe(III)-bleomycin by thioredoxin reductase: specificity of enzymatic redox centers and analysis of reactive species formation by ESR spin trapping.
    Myers JM; Cheng Q; Antholine WE; Kalyanaraman B; Filipovska A; Arnér ES; Myers CR
    Free Radic Biol Med; 2013 Jul; 60():183-94. PubMed ID: 23485585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of iron chelators and oxygen in the reduced nicotinamide adenine dinucleotide phosphate-cytochrome P450 oxidoreductase-dependent chromium(VI) reduction.
    Mikalsen A; Capellmann M; Alexander J
    Analyst; 1995 Mar; 120(3):935-8. PubMed ID: 7741258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The inhibition kinetics of yeast glutathione reductase by some metal ions.
    Tandoğan B; Ulusu NN
    J Enzyme Inhib Med Chem; 2007 Aug; 22(4):489-95. PubMed ID: 17847717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mouse-liver glutathione reductase. Purification, kinetics, and regulation.
    López-Barea J; Lee CY
    Eur J Biochem; 1979 Aug; 98(2):487-99. PubMed ID: 39757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dinitrosyl-dithiol-iron complexes, nitric oxide (NO) carriers in vivo, as potent inhibitors of human glutathione reductase and glutathione-S-transferase.
    Keese MA; Böse M; Mülsch A; Schirmer RH; Becker K
    Biochem Pharmacol; 1997 Dec; 54(12):1307-13. PubMed ID: 9393673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Herpes simplex virus type 1 ribonucleotide reductase: selective and synergistic inactivation by A1110U and its iron complex.
    Porter DJ; Harrington JA; Spector T
    Biochem Pharmacol; 1990 Feb; 39(4):639-46. PubMed ID: 2154988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential inhibition of the yeast bc1 complex by phenanthrolines and ferroin. Implications for structure and catalytic mechanism.
    Boumans H; van Gaalen MC; Grivell LA; Berden JA
    J Biol Chem; 1997 Jul; 272(27):16753-60. PubMed ID: 9201979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases.
    Korge P; Calmettes G; Weiss JN
    Biochim Biophys Acta; 2015; 1847(6-7):514-25. PubMed ID: 25701705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reevaluating the role of 1,10-phenanthroline in oxidative reactions involving ferrous ions and DNA damage.
    de Avellar IG; Magalhães MM; Silva AB; Souza LL; Leitão AC; Hermes-Lima M
    Biochim Biophys Acta; 2004 Nov; 1675(1-3):46-53. PubMed ID: 15535966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recognition site of yeast glutathione reductase for 2'-phosphate of NADP+.
    Tsai CS
    Biochem Biophys Res Commun; 1984 Oct; 124(2):572-7. PubMed ID: 6388577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.