These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 17544454)

  • 1. A linear system of partial differential equations modeling the resting potential of a heart with regional ischemia.
    MacLachlan MC; Sundnes J; Skavhaug O; Lysaker M; Nielsen BF; Tveito A
    Math Biosci; 2007 Nov; 210(1):238-52. PubMed ID: 17544454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards a computational method for imaging the extracellular potassium concentration during regional ischemia.
    Nielsen BF; Cai X; Sundnes J; Tveito A
    Math Biosci; 2009 Aug; 220(2):118-30. PubMed ID: 19520092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computing the size and location of myocardial ischemia using measurements of ST-segment shift.
    MacLachlan MC; Nielsen BF; Lysaker M; Tveito A
    IEEE Trans Biomed Eng; 2006 Jun; 53(6):1024-31. PubMed ID: 16761829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A computationally efficient method for determining the size and location of myocardial ischemia.
    Ruud TS; Nielsen BF; Lysaker M; Sundnes J
    IEEE Trans Biomed Eng; 2009 Feb; 56(2):263-72. PubMed ID: 19342326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of ST segment changes during subendocardial ischemia using a realistic 3-D cardiac geometry.
    MacLachlan MC; Sundnes J; Lines GT
    IEEE Trans Biomed Eng; 2005 May; 52(5):799-807. PubMed ID: 15887529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of simplifying assumptions in the bidomain model of cardiac tissue: application to ST segment shifts during partial ischaemia.
    Johnston PR
    Math Biosci; 2005 Nov; 198(1):97-118. PubMed ID: 16061262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the computational complexity of the bidomain and the monodomain models of electrophysiology.
    Sundnes J; Nielsen BF; Mardal KA; Cai X; Lines GT; Tveito A
    Ann Biomed Eng; 2006 Jul; 34(7):1088-97. PubMed ID: 16773461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The importance of anisotropy in modeling ST segment shift in subendocardial ischaemia.
    Johnston PR; Kilpatrick D; Li CY
    IEEE Trans Biomed Eng; 2001 Dec; 48(12):1366-76. PubMed ID: 11759918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the possibility for computing the transmembrane potential in the heart with a one shot method: an inverse problem.
    Nielsen BF; Cai X; Lysaker M
    Math Biosci; 2007 Dec; 210(2):523-53. PubMed ID: 17822722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of ischemia-induced ST-segment changes.
    MacLeod RS; Shome S; Stinstra J; Punske BB; Hopenfeld B
    J Electrocardiol; 2005 Oct; 38(4 Suppl):8-13. PubMed ID: 16226067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamical and cellular electrophysiological mechanisms of ECG changes during ischaemia.
    Aslanidi OV; Clayton RH; Lambert JL; Holden AV
    J Theor Biol; 2005 Dec; 237(4):369-81. PubMed ID: 15979649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A finite volume method solution for the bidomain equations and their application to modelling cardiac ischaemia.
    Johnston PR
    Comput Methods Biomech Biomed Engin; 2010; 13(2):157-70. PubMed ID: 19639486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso.
    Sundnes J; Lines GT; Tveito A
    Math Biosci; 2005 Apr; 194(2):233-48. PubMed ID: 15854678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhythms of high-grade block in an ionic model of a strand of regionally ischemic ventricular muscle.
    López A; Arce H; Guevara MR
    J Theor Biol; 2007 Nov; 249(1):29-45. PubMed ID: 17706682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism for ST depression associated with contiguous subendocardial ischemia.
    Hopenfeld B; Stinstra JG; Macleod RS
    J Cardiovasc Electrophysiol; 2004 Oct; 15(10):1200-6. PubMed ID: 15485448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiology driven adaptivity for the numerical solution of the bidomain equations.
    Whiteley JP
    Ann Biomed Eng; 2007 Sep; 35(9):1510-20. PubMed ID: 17541825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computing ischemic regions in the heart with the bidomain model--first steps towards validation.
    Nielsen BF; Lysaker M; Grøttum P
    IEEE Trans Med Imaging; 2013 Jun; 32(6):1085-96. PubMed ID: 23529195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding ST depression in the stress-test ECG.
    Potse M; Vinet A; LeBlanc AR; Diodati JG; Nadeau R
    Anadolu Kardiyol Derg; 2007 Jul; 7 Suppl 1():145-7. PubMed ID: 17584710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A high-order coupled finite element/boundary element torso model.
    Pullan A
    IEEE Trans Biomed Eng; 1996 Mar; 43(3):292-8. PubMed ID: 8682541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Free-form geometric modeling by integrating parametric and implicit PDEs.
    Du H; Qin H
    IEEE Trans Vis Comput Graph; 2007; 13(3):549-61. PubMed ID: 17356220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.