These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
927 related articles for article (PubMed ID: 17545220)
1. Transcriptional responses of Arabidopsis thaliana ecotypes with different glucosinolate profiles after attack by polyphagous Myzus persicae and oligophagous Brevicoryne brassicae. Kusnierczyk A; Winge P; Midelfart H; Armbruster WS; Rossiter JT; Bones AM J Exp Bot; 2007; 58(10):2537-52. PubMed ID: 17545220 [TBL] [Abstract][Full Text] [Related]
2. Towards global understanding of plant defence against aphids--timing and dynamics of early Arabidopsis defence responses to cabbage aphid (Brevicoryne brassicae) attack. Kuśnierczyk A; Winge P; Jørstad TS; Troczyńska J; Rossiter JT; Bones AM Plant Cell Environ; 2008 Aug; 31(8):1097-115. PubMed ID: 18433442 [TBL] [Abstract][Full Text] [Related]
3. Myzus persicae (green peach aphid) salivary components induce defence responses in Arabidopsis thaliana. De Vos M; Jander G Plant Cell Environ; 2009 Nov; 32(11):1548-60. PubMed ID: 19558622 [TBL] [Abstract][Full Text] [Related]
4. Gene expression and glucosinolate accumulation in Arabidopsis thaliana in response to generalist and specialist herbivores of different feeding guilds and the role of defense signaling pathways. Mewis I; Tokuhisa JG; Schultz JC; Appel HM; Ulrichs C; Gershenzon J Phytochemistry; 2006 Nov; 67(22):2450-62. PubMed ID: 17049571 [TBL] [Abstract][Full Text] [Related]
5. Identification of indole glucosinolate breakdown products with antifeedant effects on Myzus persicae (green peach aphid). Kim JH; Lee BW; Schroeder FC; Jander G Plant J; 2008 Jun; 54(6):1015-26. PubMed ID: 18346197 [TBL] [Abstract][Full Text] [Related]
6. Myzus persicae (green peach aphid) feeding on Arabidopsis induces the formation of a deterrent indole glucosinolate. Kim JH; Jander G Plant J; 2007 Mar; 49(6):1008-19. PubMed ID: 17257166 [TBL] [Abstract][Full Text] [Related]
7. Biochemistry and molecular biology of Arabidopsis-aphid interactions. de Vos M; Kim JH; Jander G Bioessays; 2007 Sep; 29(9):871-83. PubMed ID: 17691101 [TBL] [Abstract][Full Text] [Related]
8. Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. De Vos M; Van Oosten VR; Van Poecke RM; Van Pelt JA; Pozo MJ; Mueller MJ; Buchala AJ; Métraux JP; Van Loon LC; Dicke M; Pieterse CM Mol Plant Microbe Interact; 2005 Sep; 18(9):923-37. PubMed ID: 16167763 [TBL] [Abstract][Full Text] [Related]
9. Arabidopsis IQD1, a novel calmodulin-binding nuclear protein, stimulates glucosinolate accumulation and plant defense. Levy M; Wang Q; Kaspi R; Parrella MP; Abel S Plant J; 2005 Jul; 43(1):79-96. PubMed ID: 15960618 [TBL] [Abstract][Full Text] [Related]
10. Variability of aliphatic glucosinolates in Arabidopsis and their influence on insect resistance. Rohr F; Ulrichs C; Mucha-Pelzer T; Mewis I Commun Agric Appl Biol Sci; 2006; 71(2 Pt B):507-15. PubMed ID: 17385519 [TBL] [Abstract][Full Text] [Related]
11. Rhizobacteria modify plant-aphid interactions: a case of induced systemic susceptibility. Pineda A; Zheng SJ; van Loon JJ; Dicke M Plant Biol (Stuttg); 2012 Mar; 14 Suppl 1():83-90. PubMed ID: 22348327 [TBL] [Abstract][Full Text] [Related]
12. Investigations into plant biochemical wound-response pathways involved in the production of aphid-induced plant volatiles. Girling RD; Madison R; Hassall M; Poppy GM; Turner JG J Exp Bot; 2008; 59(11):3077-85. PubMed ID: 18583348 [TBL] [Abstract][Full Text] [Related]
13. Responses of Brassica oleracea cultivars to infestation by the aphid Brevicoryne brassicae: an ecological and molecular approach. Broekgaarden C; Poelman EH; Steenhuis G; Voorrips RE; Dicke M; Vosman B Plant Cell Environ; 2008 Nov; 31(11):1592-605. PubMed ID: 18721268 [TBL] [Abstract][Full Text] [Related]
14. The Arabidopsis P450 protein CYP82C2 modulates jasmonate-induced root growth inhibition, defense gene expression and indole glucosinolate biosynthesis. Liu F; Jiang H; Ye S; Chen WP; Liang W; Xu Y; Sun B; Sun J; Wang Q; Cohen JD; Li C Cell Res; 2010 May; 20(5):539-52. PubMed ID: 20354503 [TBL] [Abstract][Full Text] [Related]
15. Arabidopsis myrosinases TGG1 and TGG2 have redundant function in glucosinolate breakdown and insect defense. Barth C; Jander G Plant J; 2006 May; 46(4):549-62. PubMed ID: 16640593 [TBL] [Abstract][Full Text] [Related]
16. Early season herbivore differentially affects plant defence responses to subsequently colonizing herbivores and their abundance in the field. Poelman EH; Broekgaarden C; Van Loon JJ; Dicke M Mol Ecol; 2008 Jul; 17(14):3352-65. PubMed ID: 18565114 [TBL] [Abstract][Full Text] [Related]
17. Signaling pathways controlling induced resistance to insect herbivores in Arabidopsis. Bodenhausen N; Reymond P Mol Plant Microbe Interact; 2007 Nov; 20(11):1406-20. PubMed ID: 17977152 [TBL] [Abstract][Full Text] [Related]
18. Enhanced defense responses in Arabidopsis induced by the cell wall protein fractions from Pythium oligandrum require SGT1, RAR1, NPR1 and JAR1. Kawamura Y; Takenaka S; Hase S; Kubota M; Ichinose Y; Kanayama Y; Nakaho K; Klessig DF; Takahashi H Plant Cell Physiol; 2009 May; 50(5):924-34. PubMed ID: 19304739 [TBL] [Abstract][Full Text] [Related]
19. 'Myrosin cells' are not a prerequisite for aphid feeding on oilseed rape (Brassica napus) but affect host plant preferences. Borgen BH; Ahuja I; Thangstad OP; Honne BI; Rohloff J; Rossiter JT; Bones AM Plant Biol (Stuttg); 2012 Nov; 14(6):894-904. PubMed ID: 22672561 [TBL] [Abstract][Full Text] [Related]
20. Water stress and aphid feeding differentially influence metabolite composition in Arabidopsis thaliana (L.). Mewis I; Khan MA; Glawischnig E; Schreiner M; Ulrichs C PLoS One; 2012; 7(11):e48661. PubMed ID: 23144921 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]