These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 17545283)

  • 1. Crystal structures of the receiver domain of the response regulator PhoP from Escherichia coli in the absence and presence of the phosphoryl analog beryllofluoride.
    Bachhawat P; Stock AM
    J Bacteriol; 2007 Aug; 189(16):5987-95. PubMed ID: 17545283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of receiver domain of putative NarL family response regulator spr1814 from Streptococcus pneumoniae in the absence and presence of the phosphoryl analog beryllofluoride.
    Park AK; Moon JH; Lee KS; Chi YM
    Biochem Biophys Res Commun; 2012 May; 421(2):403-7. PubMed ID: 22521891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The X-ray crystal structures of two constitutively active mutants of the Escherichia coli PhoB receiver domain give insights into activation.
    Arribas-Bosacoma R; Kim SK; Ferrer-Orta C; Blanco AG; Pereira PJ; Gomis-Rüth FX; Wanner BL; Coll M; Solà M
    J Mol Biol; 2007 Feb; 366(2):626-41. PubMed ID: 17182055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural analysis and solution studies of the activated regulatory domain of the response regulator ArcA: a symmetric dimer mediated by the alpha4-beta5-alpha5 face.
    Toro-Roman A; Mack TR; Stock AM
    J Mol Biol; 2005 May; 349(1):11-26. PubMed ID: 15876365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of the response regulator PhoP from Mycobacterium tuberculosis reveals a dimer through the receiver domain.
    Menon S; Wang S
    Biochemistry; 2011 Jul; 50(26):5948-57. PubMed ID: 21634789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The crystal structure of the phosphorylation domain in PhoP reveals a functional tandem association mediated by an asymmetric interface.
    Birck C; Chen Y; Hulett FM; Samama JP
    J Bacteriol; 2003 Jan; 185(1):254-61. PubMed ID: 12486062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A link between dimerization and autophosphorylation of the response regulator PhoB.
    Creager-Allen RL; Silversmith RE; Bourret RB
    J Biol Chem; 2013 Jul; 288(30):21755-69. PubMed ID: 23760278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-resolution solution structure of the beryllofluoride-activated NtrC receiver domain.
    Hastings CA; Lee SY; Cho HS; Yan D; Kustu S; Wemmer DE
    Biochemistry; 2003 Aug; 42(30):9081-90. PubMed ID: 12885241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural analysis of the domain interface in DrrB, a response regulator of the OmpR/PhoB subfamily.
    Robinson VL; Wu T; Stock AM
    J Bacteriol; 2003 Jul; 185(14):4186-94. PubMed ID: 12837793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of a functional dimer of the PhoQ sensor domain.
    Cheung J; Bingman CA; Reyngold M; Hendrickson WA; Waldburger CD
    J Biol Chem; 2008 May; 283(20):13762-70. PubMed ID: 18348979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The HupR receiver domain crystal structure in its nonphospho and inhibitory phospho states.
    Davies KM; Lowe ED; Vénien-Bryan C; Johnson LN
    J Mol Biol; 2009 Jan; 385(1):51-64. PubMed ID: 18977359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A common dimerization interface in bacterial response regulators KdpE and TorR.
    Toro-Roman A; Wu T; Stock AM
    Protein Sci; 2005 Dec; 14(12):3077-88. PubMed ID: 16322582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorylation and binding interactions of CheY studied by use of Badan-labeled protein.
    Stewart RC; VanBruggen R
    Biochemistry; 2004 Jul; 43(27):8766-77. PubMed ID: 15236585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The atypical response regulator protein ChxR has structural characteristics and dimer interface interactions that are unique within the OmpR/PhoB subfamily.
    Hickey JM; Lovell S; Battaile KP; Hu L; Middaugh CR; Hefty PS
    J Biol Chem; 2011 Sep; 286(37):32606-16. PubMed ID: 21775428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The dimeric form of the unphosphorylated response regulator BaeR.
    Choudhury HG; Beis K
    Protein Sci; 2013 Sep; 22(9):1287-93. PubMed ID: 23868292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dimerization and Conformational Exchanges of the Receiver Domain of Response Regulator PhoB from Escherichia coli.
    Kou X; Liu Y; Li C; Liu M; Jiang L
    J Phys Chem B; 2018 Jun; 122(22):5749-5757. PubMed ID: 29722984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amino acids important for DNA recognition by the response regulator OmpR.
    Rhee JE; Sheng W; Morgan LK; Nolet R; Liao X; Kenney LJ
    J Biol Chem; 2008 Mar; 283(13):8664-77. PubMed ID: 18195018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unique N-terminal arm of Mycobacterium tuberculosis PhoP protein plays an unusual role in its regulatory function.
    Das AK; Kumar VA; Sevalkar RR; Bansal R; Sarkar D
    J Biol Chem; 2013 Oct; 288(40):29182-92. PubMed ID: 23963455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of activation for transcription factor PhoB suggested by different modes of dimerization in the inactive and active states.
    Bachhawat P; Swapna GV; Montelione GT; Stock AM
    Structure; 2005 Sep; 13(9):1353-63. PubMed ID: 16154092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacillus subtilis PhoP binds to the phoB tandem promoter exclusively within the phosphate starvation-inducible promoter.
    Liu W; Hulett FM
    J Bacteriol; 1997 Oct; 179(20):6302-10. PubMed ID: 9335276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.