These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 17545309)
21. Modeling and simulation of the mechanical response from nanoindentation test of DNA-filled viral capsids. Ahadi A; Johansson D; Evilevitch A J Biol Phys; 2013 Mar; 39(2):183-99. PubMed ID: 23860868 [TBL] [Abstract][Full Text] [Related]
22. Osmotic stress and pore nucleation in charged biological nanoshells and capsids. Colla T; Bakhshandeh A; Levin Y Soft Matter; 2020 Mar; 16(9):2390-2405. PubMed ID: 32067009 [TBL] [Abstract][Full Text] [Related]
23. Determination of prestress and elastic properties of virus capsids. Aggarwal A Phys Rev E; 2018 Mar; 97(3-1):032414. PubMed ID: 29776150 [TBL] [Abstract][Full Text] [Related]
24. Nanoindentation studies of full and empty viral capsids and the effects of capsid protein mutations on elasticity and strength. Michel JP; Ivanovska IL; Gibbons MM; Klug WS; Knobler CM; Wuite GJ; Schmidt CF Proc Natl Acad Sci U S A; 2006 Apr; 103(16):6184-9. PubMed ID: 16606825 [TBL] [Abstract][Full Text] [Related]
25. Squeezing protein shells: how continuum elastic models, molecular dynamics simulations, and experiments coalesce at the nanoscale. Roos WH; Gibbons MM; Arkhipov A; Uetrecht C; Watts NR; Wingfield PT; Steven AC; Heck AJ; Schulten K; Klug WS; Wuite GJ Biophys J; 2010 Aug; 99(4):1175-81. PubMed ID: 20713001 [TBL] [Abstract][Full Text] [Related]
26. The interplay between mechanics and stability of viral cages. Hernando-Pérez M; Pascual E; Aznar M; Ionel A; Castón JR; Luque A; Carrascosa JL; Reguera D; de Pablo PJ Nanoscale; 2014 Mar; 6(5):2702-9. PubMed ID: 24452242 [TBL] [Abstract][Full Text] [Related]
28. Swelling and softening of the cowpea chlorotic mottle virus in response to pH shifts. Wilts BD; Schaap IAT; Schmidt CF Biophys J; 2015 May; 108(10):2541-2549. PubMed ID: 25992732 [TBL] [Abstract][Full Text] [Related]
29. Influence of nonuniform geometry on nanoindentation of viral capsids. Gibbons MM; Klug WS Biophys J; 2008 Oct; 95(8):3640-9. PubMed ID: 18621831 [TBL] [Abstract][Full Text] [Related]
30. Diversity and identity of mechanical properties of icosahedral viral capsids studied with elastic network normal mode analysis. Tama F; Brooks CL J Mol Biol; 2005 Jan; 345(2):299-314. PubMed ID: 15571723 [TBL] [Abstract][Full Text] [Related]
31. Forces and pressures in DNA packaging and release from viral capsids. Tzlil S; Kindt JT; Gelbart WM; Ben-Shaul A Biophys J; 2003 Mar; 84(3):1616-27. PubMed ID: 12609865 [TBL] [Abstract][Full Text] [Related]
32. A crystallographic approach to structural transitions in icosahedral viruses. Indelicato G; Cermelli P; Salthouse DG; Racca S; Zanzotto G; Twarock R J Math Biol; 2012 Apr; 64(5):745-73. PubMed ID: 21611828 [TBL] [Abstract][Full Text] [Related]
33. Normal mode calculations of icosahedral viruses with full dihedral flexibility by use of molecular symmetry. van Vlijmen HW; Karplus M J Mol Biol; 2005 Jul; 350(3):528-42. PubMed ID: 15922356 [TBL] [Abstract][Full Text] [Related]
34. Nanoindentation of virus capsids in a molecular model. Cieplak M; Robbins MO J Chem Phys; 2010 Jan; 132(1):015101. PubMed ID: 20078182 [TBL] [Abstract][Full Text] [Related]