These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

922 related articles for article (PubMed ID: 17545317)

  • 1. Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose.
    Wisselink HW; Toirkens MJ; del Rosario Franco Berriel M; Winkler AA; van Dijken JP; Pronk JT; van Maris AJ
    Appl Environ Microbiol; 2007 Aug; 73(15):4881-91. PubMed ID: 17545317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Codon-optimized bacterial genes improve L-Arabinose fermentation in recombinant Saccharomyces cerevisiae.
    Wiedemann B; Boles E
    Appl Environ Microbiol; 2008 Apr; 74(7):2043-50. PubMed ID: 18263741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Establishment of L-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering.
    Bera AK; Sedlak M; Khan A; Ho NW
    Appl Microbiol Biotechnol; 2010 Aug; 87(5):1803-11. PubMed ID: 20449743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains.
    Wisselink HW; Toirkens MJ; Wu Q; Pronk JT; van Maris AJ
    Appl Environ Microbiol; 2009 Feb; 75(4):907-14. PubMed ID: 19074603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fermentation performance and intracellular metabolite patterns in laboratory and industrial xylose-fermenting Saccharomyces cerevisiae.
    Zaldivar J; Borges A; Johansson B; Smits HP; Villas-Bôas SG; Nielsen J; Olsson L
    Appl Microbiol Biotechnol; 2002 Aug; 59(4-5):436-42. PubMed ID: 12172606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A modified Saccharomyces cerevisiae strain that consumes L-Arabinose and produces ethanol.
    Becker J; Boles E
    Appl Environ Microbiol; 2003 Jul; 69(7):4144-50. PubMed ID: 12839792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae.
    Madhavan A; Srivastava A; Kondo A; Bisaria VS
    Crit Rev Biotechnol; 2012 Mar; 32(1):22-48. PubMed ID: 21204601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status.
    van Maris AJ; Abbott DA; Bellissimi E; van den Brink J; Kuyper M; Luttik MA; Wisselink HW; Scheffers WA; van Dijken JP; Pronk JT
    Antonie Van Leeuwenhoek; 2006 Nov; 90(4):391-418. PubMed ID: 17033882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-scale consequences of cofactor balancing in engineered pentose utilization pathways in Saccharomyces cerevisiae.
    Ghosh A; Zhao H; Price ND
    PLoS One; 2011; 6(11):e27316. PubMed ID: 22076150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing ethanol yields through d-xylose and l-arabinose co-fermentation after construction of a novel high efficient l-arabinose-fermenting Saccharomyces cerevisiae strain.
    Caballero A; Ramos JL
    Microbiology (Reading); 2017 Apr; 163(4):442-452. PubMed ID: 28443812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stress-related challenges in pentose fermentation to ethanol by the yeast Saccharomyces cerevisiae.
    Almeida JR; Runquist D; Sànchez i Nogué V; Lidén G; Gorwa-Grauslund MF
    Biotechnol J; 2011 Mar; 6(3):286-99. PubMed ID: 21305697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle.
    Kuyper M; Winkler AA; van Dijken JP; Pronk JT
    FEMS Yeast Res; 2004 Mar; 4(6):655-64. PubMed ID: 15040955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation.
    Kuyper M; Hartog MM; Toirkens MJ; Almering MJ; Winkler AA; van Dijken JP; Pronk JT
    FEMS Yeast Res; 2005 Feb; 5(4-5):399-409. PubMed ID: 15691745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae.
    Verho R; Londesborough J; Penttilä M; Richard P
    Appl Environ Microbiol; 2003 Oct; 69(10):5892-7. PubMed ID: 14532041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Progress in research of pentose transporters and C6/C5 co-metabolic strains in Saccharomyces cerevisiae].
    Wang C; Li H; Xu L; Shen Y; Hou J; Bao X
    Sheng Wu Gong Cheng Xue Bao; 2018 Oct; 34(10):1543-1555. PubMed ID: 30394022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization.
    Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B
    Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background.
    Novy V; Brunner B; Müller G; Nidetzky B
    Biotechnol Bioeng; 2017 Jan; 114(1):163-171. PubMed ID: 27426989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional Analysis of Two l-Arabinose Transporters from Filamentous Fungi Reveals Promising Characteristics for Improved Pentose Utilization in Saccharomyces cerevisiae.
    Li J; Xu J; Cai P; Wang B; Ma Y; Benz JP; Tian C
    Appl Environ Microbiol; 2015 Jun; 81(12):4062-70. PubMed ID: 25841015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repeated-batch fermentations of xylose and glucose-xylose mixtures using a respiration-deficient Saccharomyces cerevisiae engineered for xylose metabolism.
    Kim SR; Lee KS; Choi JH; Ha SJ; Kweon DH; Seo JH; Jin YS
    J Biotechnol; 2010 Nov; 150(3):404-7. PubMed ID: 20933550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway.
    Ishii J; Yoshimura K; Hasunuma T; Kondo A
    Appl Microbiol Biotechnol; 2013 Mar; 97(6):2597-607. PubMed ID: 23001007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 47.