BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 17545328)

  • 1. Effect of nutrient starvation on the cellular composition and metabolic capacity of Saccharomyces cerevisiae.
    Albers E; Larsson C; Andlid T; Walsh MC; Gustafsson L
    Appl Environ Microbiol; 2007 Aug; 73(15):4839-48. PubMed ID: 17545328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon starvation can induce energy deprivation and loss of fermentative capacity in Saccharomyces cerevisiae.
    Thomsson E; Larsson C; Albers E; Nilsson A; Franzén CJ; Gustafsson L
    Appl Environ Microbiol; 2003 Jun; 69(6):3251-7. PubMed ID: 12788723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Starvation response of Saccharomyces cerevisiae grown in anaerobic nitrogen- or carbon-limited chemostat cultures.
    Thomsson E; Gustafsson L; Larsson C
    Appl Environ Microbiol; 2005 Jun; 71(6):3007-13. PubMed ID: 15932996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchical and metabolic regulation of glucose influx in starved Saccharomyces cerevisiae.
    Rossell S; van der Weijden CC; Kruckeberg AL; Bakker BM; Westerhoff HV
    FEMS Yeast Res; 2005 Apr; 5(6-7):611-9. PubMed ID: 15780660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The catabolic capacity of Saccharomyces cerevisiae is preserved to a higher extent during carbon compared to nitrogen starvation.
    Nilsson A; Påhlman IL; Jovall PA; Blomberg A; Larsson C; Gustafsson L
    Yeast; 2001 Nov; 18(15):1371-81. PubMed ID: 11746599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of in vivo kinetics of the starvation-induced Hxt5 glucose transporter of Saccharomyces cerevisiae.
    Buziol S; Becker J; Baumeister A; Jung S; Mauch K; Reuss M; Boles E
    FEMS Yeast Res; 2002 Aug; 2(3):283-91. PubMed ID: 12702277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapamycin pre-treatment preserves viability, ATP level and catabolic capacity during carbon starvation of Saccharomyces cerevisiae.
    Thomsson E; Svensson M; Larsson C
    Yeast; 2005 Jun; 22(8):615-23. PubMed ID: 16034823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulating the distribution of fluxes among respiration and fermentation by overexpression of HAP4 in Saccharomyces cerevisiae.
    van Maris AJ; Bakker BM; Brandt M; Boorsma A; Teixeira de Mattos MJ; Grivell LA; Pronk JT; Blom J
    FEMS Yeast Res; 2001 Jul; 1(2):139-49. PubMed ID: 12702359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of nitrogen metabolism in the triggering of ethanol fermentation in aerobic chemostat cultures of Saccharomyces cerevisiae.
    Aon JC; Cortassa S
    Metab Eng; 2001 Jul; 3(3):250-64. PubMed ID: 11461147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological effects of nitrogen starvation in an anaerobic batch culture of Saccharomyces cerevisiae.
    Schulze U; Lidén G; Nielsen J; Villadsen J
    Microbiology (Reading); 1996 Aug; 142 ( Pt 8)():2299-310. PubMed ID: 8760942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prolonged selection in aerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae causes a partial loss of glycolytic capacity.
    Jansen MLA; Diderich JA; Mashego M; Hassane A; de Winde JH; Daran-Lapujade P; Pronk JT
    Microbiology (Reading); 2005 May; 151(Pt 5):1657-1669. PubMed ID: 15870473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative Physiology of Non-Energy-Limited Retentostat Cultures of Saccharomyces cerevisiae at Near-Zero Specific Growth Rates.
    Liu Y; El Masoudi A; Pronk JT; van Gulik WM
    Appl Environ Microbiol; 2019 Oct; 85(20):. PubMed ID: 31375494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extreme calorie restriction and energy source starvation in Saccharomyces cerevisiae represent distinct physiological states.
    Boender LG; Almering MJ; Dijk M; van Maris AJ; de Winde JH; Pronk JT; Daran-Lapujade P
    Biochim Biophys Acta; 2011 Dec; 1813(12):2133-44. PubMed ID: 21803078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of a mutated SPT15 gene in Saccharomyces cerevisiae enhances both cell growth and ethanol production in microaerobic batch, fed-batch, and simultaneous saccharification and fermentations.
    Seong YJ; Park H; Yang J; Kim SJ; Choi W; Kim KH; Park YC
    Appl Microbiol Biotechnol; 2017 May; 101(9):3567-3575. PubMed ID: 28168313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ISC1-dependent metabolic adaptation reveals an indispensable role for mitochondria in induction of nuclear genes during the diauxic shift in Saccharomyces cerevisiae.
    Kitagaki H; Cowart LA; Matmati N; Montefusco D; Gandy J; de Avalos SV; Novgorodov SA; Zheng J; Obeid LM; Hannun YA
    J Biol Chem; 2009 Apr; 284(16):10818-30. PubMed ID: 19179331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Saccharomyces cerevisiae JEN1 promoter activity is inversely related to concentration of repressing sugar.
    Chambers P; Issaka A; Palecek SP
    Appl Environ Microbiol; 2004 Jan; 70(1):8-17. PubMed ID: 14711620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth and metabolism of Saccharomyces cerevisiae in chemostat cultures under carbon-, nitrogen-, or carbon- and nitrogen-limiting conditions.
    Larsson C; von Stockar U; Marison I; Gustafsson L
    J Bacteriol; 1993 Aug; 175(15):4809-16. PubMed ID: 8335637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in the metabolome of Saccharomyces cerevisiae associated with evolution in aerobic glucose-limited chemostats.
    Mashego MR; Jansen ML; Vinke JL; van Gulik WM; Heijnen JJ
    FEMS Yeast Res; 2005 Feb; 5(4-5):419-30. PubMed ID: 15691747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catabolite inactivation of the sugar transporters in Saccharomyces cerevisiae is inhibited by the presence of a nitrogen source.
    Lucero P; Moreno E; Lagunas R
    FEMS Yeast Res; 2002 Jan; 1(4):307-14. PubMed ID: 12702334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New insights into the regulation of the Saccharomyces cerevisiae UGA4 gene: two parallel pathways participate in carbon-regulated transcription.
    Luzzani C; Cardillo SB; Bermúdez Moretti M; Correa García S
    Microbiology (Reading); 2007 Nov; 153(Pt 11):3677-3684. PubMed ID: 17975075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.