BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 17545945)

  • 1. Alterations in membrane cholesterol cause mobilization of lipid rafts from specific granules and prime human neutrophils for enhanced adherence-dependent oxidant production.
    Solomkin JS; Robinson CT; Cave CM; Ehmer B; Lentsch AB
    Shock; 2007 Sep; 28(3):334-8. PubMed ID: 17545945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The presence of membrane Proteinase 3 in neutrophil lipid rafts and its colocalization with FcgammaRIIIb and cytochrome b558.
    David A; Fridlich R; Aviram I
    Exp Cell Res; 2005 Aug; 308(1):156-65. PubMed ID: 15916759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fas signaling induces raft coalescence that is blocked by cholesterol depletion in human RPE cells undergoing apoptosis.
    Lincoln JE; Boling M; Parikh AN; Yeh Y; Gilchrist DG; Morse LS
    Invest Ophthalmol Vis Sci; 2006 May; 47(5):2172-8. PubMed ID: 16639029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane lipid microdomains differentially regulate intracellular signaling events in human neutrophils.
    Tuluc F; Meshki J; Kunapuli SP
    Int Immunopharmacol; 2003 Dec; 3(13-14):1775-90. PubMed ID: 14636828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lectin-induced activation of plasma membrane NADPH oxidase in cholesterol-depleted human neutrophils.
    Gorudko IV; Mukhortava AV; Caraher B; Ren M; Cherenkevich SN; Kelly GM; Timoshenko AV
    Arch Biochem Biophys; 2011 Dec; 516(2):173-81. PubMed ID: 22056482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple method for effective and safe removal of membrane cholesterol from lipid rafts in vascular endothelial cells: implications in oxidant-mediated lipid signaling.
    Kline MA; O'Connor Butler ES; Hinzey A; Sliman S; Kotha SR; Marsh CB; Uppu RM; Parinandi NL
    Methods Mol Biol; 2010; 610():201-11. PubMed ID: 20013180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implications of lipid raft disintegration: enhanced anti-inflammatory macrophage phenotype.
    Cuschieri J
    Surgery; 2004 Aug; 136(2):169-75. PubMed ID: 15300176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of methyl-beta-cyclodextrin on T lymphocytes lipid rafts with aging.
    Larbi A; Douziech N; Khalil A; Dupuis G; Gheraïri S; Guérard KP; Fülöp T
    Exp Gerontol; 2004 Apr; 39(4):551-8. PubMed ID: 15050290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles of lipid rafts in integrin-dependent adhesion and gp130 signalling pathway in mouse embryonic neural precursor cells.
    Yanagisawa M; Nakamura K; Taga T
    Genes Cells; 2004 Sep; 9(9):801-9. PubMed ID: 15330857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuroblastoma GOTO cells are hypersensitive to disruption of lipid rafts.
    Tomioka R; Minami N; Kushida A; Horibe S; Izumi I; Kato A; Fukushima K; Ideo H; Yamashita K; Hirose S; Saito Y
    Biochem Biophys Res Commun; 2009 Nov; 389(1):122-7. PubMed ID: 19706290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclodextrins but not compactin inhibit the lateral diffusion of membrane proteins independent of cholesterol.
    Shvartsman DE; Gutman O; Tietz A; Henis YI
    Traffic; 2006 Jul; 7(7):917-26. PubMed ID: 16787400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective binding of perfringolysin O derivative to cholesterol-rich membrane microdomains (rafts).
    Waheed AA; Shimada Y; Heijnen HF; Nakamura M; Inomata M; Hayashi M; Iwashita S; Slot JW; Ohno-Iwashita Y
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):4926-31. PubMed ID: 11309501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Raft localization of CXCR4 is primarily required for X4-tropic human immunodeficiency virus type 1 infection.
    Kamiyama H; Yoshii H; Tanaka Y; Sato H; Yamamoto N; Kubo Y
    Virology; 2009 Mar; 386(1):23-31. PubMed ID: 19178925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Choice of cyclodextrin for cellular cholesterol depletion for vascular endothelial cell lipid raft studies: cell membrane alterations, cytoskeletal reorganization and cytotoxicity.
    Hinzey AH; Kline MA; Kotha SR; Sliman SM; Butler ES; Shelton AB; Gurney TR; Parinandi NL
    Indian J Biochem Biophys; 2012 Oct; 49(5):329-41. PubMed ID: 23259319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative-induced calcium mobilization is dependent on annexin VI release from lipid rafts.
    Cuschieri J; Bulger E; Garcia I; Maier RV
    Surgery; 2005 Aug; 138(2):158-64. PubMed ID: 16153422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of cholesterol depletion on shape changes, actin reorganization, and signal transduction in neutrophil-like HL-60 cells.
    Niggli V; Meszaros AV; Oppliger C; Tornay S
    Exp Cell Res; 2004 Jun; 296(2):358-68. PubMed ID: 15149865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enteropathogenic Escherichia coli Tir translocation and pedestal formation requires membrane cholesterol in the absence of bundle-forming pili.
    Allen-Vercoe E; Waddell B; Livingstone S; Deans J; DeVinney R
    Cell Microbiol; 2006 Apr; 8(4):613-24. PubMed ID: 16548887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The reduced GM-CSF priming of ROS production in granulocytes from patients with myelodysplasia is associated with an impaired lipid raft formation.
    Fuhler GM; Blom NR; Coffer PJ; Drayer AL; Vellenga E
    J Leukoc Biol; 2007 Feb; 81(2):449-57. PubMed ID: 17079651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disruption of lipid rafts causes apoptotic cell death in HaCaT keratinocytes.
    Bang B; Gniadecki R; Gajkowska B
    Exp Dermatol; 2005 Apr; 14(4):266-72. PubMed ID: 15810884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Urokinase-receptor-mediated phenotypic changes in vascular smooth muscle cells require the involvement of membrane rafts.
    Kiyan J; Smith G; Haller H; Dumler I
    Biochem J; 2009 Oct; 423(3):343-51. PubMed ID: 19691446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.