These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 1754614)

  • 1. Towards an ideal blood analogue for Doppler ultrasound phantoms.
    Oates CP
    Phys Med Biol; 1991 Nov; 36(11):1433-42. PubMed ID: 1754614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shear rate dependence of ultrasound backscattering from blood samples characterized by different levels of erythrocyte aggregation.
    Cloutier G; Qin Z
    Ann Biomed Eng; 2000 Apr; 28(4):399-407. PubMed ID: 10870896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A computer controlled flow phantom for generation of physiological Doppler waveforms.
    Hoskins PR; Anderson T; McDicken WN
    Phys Med Biol; 1989 Nov; 34(11):1709-17. PubMed ID: 2479955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Red blood cell aggregates and their effect on non-Newtonian blood viscosity at low hematocrit in a two-fluid low shear rate microfluidic system.
    Mehri R; Mavriplis C; Fenech M
    PLoS One; 2018; 13(7):e0199911. PubMed ID: 30024907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blood flow measurement by Doppler ultrasound: a question of angles.
    Thorne GC; Fried-Booth D; Brooks W; Elder P; Follett DH
    Phys Med Biol; 1993 Nov; 38(11):1637-45. PubMed ID: 8272438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear propagation in Doppler ultrasound.
    Li S; McDicken WN; Hoskins PR
    Ultrasound Med Biol; 1993; 19(5):359-64. PubMed ID: 8356779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the spectral properties of Doppler thread phantoms.
    Cathignol D; Dickerson K; Newhouse VL; Faure P; Chapelon JY
    Ultrasound Med Biol; 1994; 20(7):601-10. PubMed ID: 7810020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Power Doppler ultrasound evaluation of the shear rate and shear stress dependences of red blood cell aggregation.
    Cloutier G; Qin Z; Durand LG; Teh BG
    IEEE Trans Biomed Eng; 1996 May; 43(5):441-50. PubMed ID: 8849457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A New Scatter Particle and Mixture Fluid for Preparing Blood Mimicking Fluid for Wall-Less Flow Phantom.
    Oglat AA; Matjafri MZ; Suardi N; Abdelrahman MA; Oqlat MA; Oqlat AA
    J Med Ultrasound; 2018; 26(3):134-142. PubMed ID: 30283199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Transition to Turbulence for Blood in a Straight Pipe Under Steady Flow Conditions.
    Biswas D; Casey DM; Crowder DC; Steinman DA; Yun YH; Loth F
    J Biomech Eng; 2016 Jul; 138(7):. PubMed ID: 27109010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of a new blood-mimicking fluid for use in Doppler flow test objects.
    Ramnarine KV; Nassiri DK; Hoskins PR; Lubbers J
    Ultrasound Med Biol; 1998 Mar; 24(3):451-9. PubMed ID: 9587999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A flexible blood flow phantom capable of independently producing constant and pulsatile flow with a predictable spatial flow profile for ultrasound flow measurement validations.
    Hein IA; O'Brien WD
    IEEE Trans Biomed Eng; 1992 Nov; 39(11):1111-22. PubMed ID: 1487274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intraluminal ultrasound intensity distribution and backscattered Doppler power.
    Thompson RS; Bambi G; Steel R; Tortoli P
    Ultrasound Med Biol; 2004 Nov; 30(11):1485-94. PubMed ID: 15588959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forces acting in the direction of propagation in pulsed ultrasound fields.
    Starritt HC; Duck FA; Humphrey VF
    Phys Med Biol; 1991 Nov; 36(11):1465-74. PubMed ID: 1754617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the frequency dependence (5-120 MHz) of ultrasound backscattering by red cell aggregates in shear flow at a normal hematocrit.
    Fontaine I; Cloutier G
    J Acoust Soc Am; 2003 May; 113(5):2893-900. PubMed ID: 12765406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An experimental study of Newtonian and non-Newtonian flow dynamics in a ventricular assist device.
    Mann KA; Deutsch S; Tarbell JM; Geselowitz DB; Rosenberg G; Pierce WS
    J Biomech Eng; 1987 May; 109(2):139-47. PubMed ID: 3599939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linear and nonlinear analyses of pulsatile blood flow in a cylindrical tube.
    El-Khatib FH; Damiano ER
    Biorheology; 2003; 40(5):503-22. PubMed ID: 12897417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of the Doppler spectra from human blood and artificial blood used in a flow phantom.
    Hoskins PR; Loupas T; McDicken WN
    Ultrasound Med Biol; 1990; 16(2):141-7. PubMed ID: 1691560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The characterization of a non-Newtonian blood analog in natural- and shear-layer-induced transitional flow.
    Li L; Walker AM; Rival DE
    Biorheology; 2014; 51(4-5):275-91. PubMed ID: 25281596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of viscosity on the shear strain remotely induced by focused ultrasound in viscoelastic media.
    Barannik EA; Girnyk SA; Tovstiak VV; Marusenko AI; Volokhov VA; Sarvazyan AP; Emelianov SY
    J Acoust Soc Am; 2004 May; 115(5 Pt 1):2358-64. PubMed ID: 15139649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.