These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 17546147)

  • 1. Optical coherence tomography with plasmon resonant nanorods of gold.
    Troutman TS; Barton JK; Romanowski M
    Opt Lett; 2007 Jun; 32(11):1438-40. PubMed ID: 17546147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic chiral contrast agents for optical coherence tomography: numerical study.
    Mehta KB; Chen N
    Opt Express; 2011 Aug; 19(16):14903-12. PubMed ID: 21934851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK; Eustis S; El-Sayed MA
    J Phys Chem B; 2006 Sep; 110(37):18243-53. PubMed ID: 16970442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmentally benign in situ synthesis of gold nanotapes using carboxymethyl cellulose.
    Bhattacharjee RR; Rashid MH; Mandal TK
    J Nanosci Nanotechnol; 2008 Jul; 8(7):3610-5. PubMed ID: 19051918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue perfusion modelling in optical coherence tomography.
    Stohanzlova P; Kolar R
    Biomed Eng Online; 2017 Feb; 16(1):27. PubMed ID: 28178998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmon Resonant Silica-Coated Silver Nanoplates as Contrast agents for Optical Coherence Tomography.
    Meleppat RK; Prabhathan P; Keey SL; Matham MV
    J Biomed Nanotechnol; 2016 Oct; 12(10):1929-37. PubMed ID: 29360336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced infrared neural stimulation using localized surface plasmon resonance of gold nanorods.
    Eom K; Kim J; Choi JM; Kang T; Chang JW; Byun KM; Jun SB; Kim SJ
    Small; 2014 Oct; 10(19):3853-7. PubMed ID: 24975778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging single chiral nanoparticles in turbid media using circular-polarization optical coherence microscopy.
    Zhang P; Mehta K; Rehman S; Chen N
    Sci Rep; 2014 May; 4():4979. PubMed ID: 24828009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of interfering optical fields in the trapping and melting of gold nanorods and related clusters.
    Deng HD; Li GC; Dai QF; Ouyang M; Lan S; Gopal AV; Trofimov VA; Lysak TM
    Opt Express; 2012 May; 20(10):10963-70. PubMed ID: 22565719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanorod-coated PNIPAM microgels: thermoresponsive optical properties.
    Karg M; Pastoriza-Santos I; Pérez-Juste J; Hellweg T; Liz-Marzán LM
    Small; 2007 Jul; 3(7):1222-9. PubMed ID: 17487899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Off-resonance surface-enhanced Raman spectroscopy from gold nanorod suspensions as a function of aspect ratio: not what we thought.
    Sivapalan ST; Devetter BM; Yang TK; van Dijk T; Schulmerich MV; Carney PS; Bhargava R; Murphy CJ
    ACS Nano; 2013 Mar; 7(3):2099-105. PubMed ID: 23438342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single particle plasmon spectroscopy of silver nanowires and gold nanorods.
    N'Gom M; Ringnalda J; Mansfield JF; Agarwal A; Kotov N; Zaluzec NJ; Norris TB
    Nano Lett; 2008 Oct; 8(10):3200-4. PubMed ID: 18778109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography.
    Tseng HY; Lee CK; Wu SY; Chi TT; Yang KM; Wang JY; Kiang YW; Yang CC; Tsai MT; Wu YC; Chou HY; Chiang CP
    Nanotechnology; 2010 Jul; 21(29):295102. PubMed ID: 20601768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents.
    Chen J; Saeki F; Wiley BJ; Cang H; Cobb MJ; Li ZY; Au L; Zhang H; Kimmey MB; Li X; Xia Y
    Nano Lett; 2005 Mar; 5(3):473-7. PubMed ID: 15755097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bimetallic structure fabricated by laser interference lithography for tuning surface plasmon resonance.
    Liu CH; Hong MH; Cheung HW; Zhang F; Huang ZQ; Tan LS; Hor TS
    Opt Express; 2008 Jul; 16(14):10701-9. PubMed ID: 18607486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectral fractionation detection of gold nanorod contrast agents using optical coherence tomography.
    Jia Y; Liu G; Gordon AY; Gao SS; Pechauer AD; Stoddard J; McGill TJ; Jayagopal A; Huang D
    Opt Express; 2015 Feb; 23(4):4212-25. PubMed ID: 25836459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual-wavelength band spectroscopic optical frequency domain imaging using plasmon-resonant scattering in metallic nanoparticles.
    Kim TS; Jang SJ; Oh N; Kim Y; Park T; Park J; Oh WY
    Opt Lett; 2014 May; 39(10):3082-5. PubMed ID: 24978279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface plasmon effects on two photon luminescence of gold nanorods.
    Wang DS; Hsu FY; Lin CW
    Opt Express; 2009 Jul; 17(14):11350-9. PubMed ID: 19582049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale subsurface- and material-specific identification of single nanoparticles.
    Nuño Z; Hessler B; Ochoa J; Shon YS; Bonney C; Abate Y
    Opt Express; 2011 Oct; 19(21):20865-75. PubMed ID: 21997096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.