These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 1754616)

  • 21. The locations of peak pressures and peak intensities in finite amplitude beams from a pulsed focused transducer.
    Duck FA; Starritt HC
    Ultrasound Med Biol; 1986 May; 12(5):403-9. PubMed ID: 3521031
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The influence of finite aperture and frequency response of ultrasonic hydrophone probes on the determination of acoustic output.
    Radulescu EG; Lewin PA; Wójcik J; Nowicki A; Berger WA
    Ultrasonics; 2004 Apr; 42(1-9):367-72. PubMed ID: 15047313
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Progress in developing a thermal method for measuring the output power of medical ultrasound transducers that exploits the pyroelectric effect.
    Zeqiri B; Zauhar G; Hodnett M; Barrie J
    Ultrasonics; 2011 May; 51(4):420-4. PubMed ID: 21163509
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Study for imaging of inside bone using FM-chirp pulse compression system.
    Irie T; Ohdaira E; Itoh K
    Ultrasonics; 2004 Apr; 42(1-9):713-6. PubMed ID: 15047372
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigation of transmit and receive performance at the fundamental and third harmonic resonance frequency of a medical ultrasound transducer.
    Frijlink ME; Løvstakken L; Torp H
    Ultrasonics; 2009 Dec; 49(8):601-4. PubMed ID: 19403153
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Imaging with concave large-aperture therapeutic ultrasound arrays using conventional synthetic-aperture beamforming.
    Wan Y; Ebbini ES
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Aug; 55(8):1705-18. PubMed ID: 18986915
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Iterative reconstruction of the transducer surface velocity.
    Alles E; van Dongen K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 May; 60(5):954-62. PubMed ID: 23661129
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nonlinear propagation and the output indices.
    Carstensen EL; Dalecki D; Gracewski SM; Christopher T
    J Ultrasound Med; 1999 Jan; 18(1):69-80. PubMed ID: 9952082
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Experimental study of underwater transmission characteristics of high-frequency 30 MHz polyurea ultrasonic transducer.
    Nakazawa M; Aoyagi T; Tabaru M; Nakamura K; Ueha S
    Ultrasonics; 2014 Feb; 54(2):526-36. PubMed ID: 24035608
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nonlinear and linear propagation of diagnostic ultrasound pulses.
    Filipczyński L; Kujawska T; Tymkiewicz R; Wójcik J
    Ultrasound Med Biol; 1999 Feb; 25(2):285-99. PubMed ID: 10320318
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acoustic Field Characterization of Medical Array Transducers Based on Unfocused Transmits and Single-Plane Hydrophone Measurements.
    Marhenke T; Sanabria SJ; Chintada BR; Furrer R; Neuenschwander J; Goksel O
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30791437
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Forces acting in the direction of propagation in pulsed ultrasound fields.
    Starritt HC; Duck FA; Humphrey VF
    Phys Med Biol; 1991 Nov; 36(11):1465-74. PubMed ID: 1754617
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A comparison of time-domain solutions for the full-wave equation and the parabolic wave equation for a diagnostic ultrasound transducer.
    Pinton GF; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Mar; 55(3):730-3. PubMed ID: 18407863
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of the ultrasound transducer bandwidth on selection of the complementary Golay bit code length.
    Nowicki A; Trots I; Lewin PA; Secomski W; Tymkiewicz R
    Ultrasonics; 2007 Dec; 47(1-4):64-73. PubMed ID: 17825338
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prediction of in situ exposure to ultrasound: an improved method.
    Bacon DR
    Ultrasound Med Biol; 1989; 15(4):355-61. PubMed ID: 2763386
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nonlinear Effects in Ultrasound Fields of Diagnostic-type Transducers Used for Kidney Stone Propulsion: Characterization in Water.
    Karzova M; Cunitz B; Yuldashev P; Andriyakhina Y; Kreider W; Sapozhnikov O; Bailey M; Khokhlova V
    AIP Conf Proc; 2015; 1685():. PubMed ID: 27087711
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Histotripsy Lesion Formation Using an Ultrasound Imaging Probe Enabled by a Low-Frequency Pump Transducer.
    Lin KW; Hall TL; Xu Z; Cain CA
    Ultrasound Med Biol; 2015 Aug; 41(8):2148-60. PubMed ID: 25929995
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A parametric study of the concentric-ring transducer design for MRI guided ultrasound surgery.
    Fjield T; Fan X; Hynynen K
    J Acoust Soc Am; 1996 Aug; 100(2 Pt 1):1220-30. PubMed ID: 8759971
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The output of pulse-echo ultrasound equipment: a survey of powers, pressures and intensities.
    Duck FA; Starritt HC; Aindow JD; Perkins MA; Hawkins AJ
    Br J Radiol; 1985 Oct; 58(694):989-1001. PubMed ID: 3916078
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mathematical simulation of pressure pulse propagation in biological tissues.
    Adrov VN; Chernomordik VV
    Ultrason Imaging; 1993 Jan; 15(1):59-71. PubMed ID: 8328120
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.