These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 1754623)

  • 21. Effect of collagen and mineral content on the high-frequency ultrasonic properties of human cancellous bone.
    Hoffmeister BK; Whitten SA; Kaste SC; Rho JY
    Osteoporos Int; 2002 Jan; 13(1):26-32. PubMed ID: 11878452
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The influence of porosity and pore size on the ultrasonic properties of bone investigated using a phantom material.
    Strelitzki R; Evans JA; Clarke AJ
    Osteoporos Int; 1997; 7(4):370-5. PubMed ID: 9373573
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of bone structure on ultrasonic attenuation and velocity.
    Tavakoli MB; Evans JA
    Ultrasonics; 1992; 30(6):389-95. PubMed ID: 1440986
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The measurement of broadband ultrasonic attenuation in cancellous bone--a review of the science and technology.
    Langton CM; Njeh CF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1546-54. PubMed ID: 18986945
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solid volume fraction estimation of bone:marrow replica models using ultrasound transit time spectroscopy.
    Wille ML; Langton CM
    Ultrasonics; 2016 Feb; 65():329-37. PubMed ID: 26455950
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Ultrasonic wave propagation characteristics of cancellous bone].
    Otani T
    Clin Calcium; 2004 Dec; 14(12):69-75. PubMed ID: 15577177
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ability of ultrasound backscattering to predict mechanical properties of bovine trabecular bone.
    Hakulinen MA; Töyräs J; Saarakkala S; Hirvonen J; Kröger H; Jurvelin JS
    Ultrasound Med Biol; 2004 Jul; 30(7):919-27. PubMed ID: 15313324
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [New methods for the evaluation of bone quality. Bone Quality Evaluation by QUS.].
    Matsukawa M
    Clin Calcium; 2017; 27(8):1113-1120. PubMed ID: 28743847
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Frequency specific ultrasound attenuation is sensitive to trabecular bone structure.
    Lin W; Serra-Hsu F; Cheng J; Qin YX
    Ultrasound Med Biol; 2012 Dec; 38(12):2198-207. PubMed ID: 22975035
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The characterization of broadband ultrasound attenuation and fractal analysis by biomechanical properties.
    Rho JY; Flaitz D; Swarnakar V; Acharya RS
    Bone; 1997 May; 20(5):497-504. PubMed ID: 9145249
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative ultrasound predicts bone mineral density and failure load in human lumbar vertebrae.
    Nicholson PH; Alkalay R
    Clin Biomech (Bristol, Avon); 2007 Jul; 22(6):623-9. PubMed ID: 17499408
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultrasound velocity and attenuation in cancellous bone samples from lumbar vertebra and calcaneus.
    Trebacz H; Natali A
    Osteoporos Int; 1999; 9(2):99-105. PubMed ID: 10367035
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A phantom for quantitative ultrasound of trabecular bone.
    Clarke AJ; Evans JA; Truscott JG; Milner R; Smith MA
    Phys Med Biol; 1994 Oct; 39(10):1677-87. PubMed ID: 15551538
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The non-linear relationship between BUA and porosity in cancellous bone.
    Hodgskinson R; Njeh CF; Whitehead MA; Langton CM
    Phys Med Biol; 1996 Nov; 41(11):2411-20. PubMed ID: 8938035
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improving broadband ultrasound attenuation assessment in cancellous bone by mitigating the influence of cortical bone: Phantom and in-vitro study.
    Tasinkevych Y; Falińska K; Lewin PA; Litniewski J
    Ultrasonics; 2019 Apr; 94():382-390. PubMed ID: 30001852
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Scattering of ultrasound in cancellous bone: predictions from a theoretical model.
    Nicholson PH; Strelitzki R; Cleveland RO; Bouxsein ML
    J Biomech; 2000 Apr; 33(4):503-6. PubMed ID: 10768401
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultrasonic characterization of cancellous bone using apparent integrated backscatter.
    Hoffmeister BK; Jones CI; Caldwell GJ; Kaste SC
    Phys Med Biol; 2006 Jun; 51(11):2715-27. PubMed ID: 16723761
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Orthogonal relationships between ultrasonic velocity and material properties of bovine cancellous bone.
    Njeh CF; Hodgskinson R; Currey JD; Langton CM
    Med Eng Phys; 1996 Jul; 18(5):373-81. PubMed ID: 8818135
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultrasonic assessment of bone: a review.
    Hans D; Schott AM; Meunier PJ
    Eur J Med; 1993 Mar; 2(3):157-63. PubMed ID: 8261057
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relationships of Ultrasonic Backscatter With Bone Densities and Microstructure in Bovine Cancellous Bone.
    Liu C; Li B; Diwu Q; Li Y; Zhang R; Ta D; Wang W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Dec; 65(12):2311-2321. PubMed ID: 30575524
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.