BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 17546494)

  • 21. Binding of NF-kB to the HIV-1 LTR is not sufficient to induce HIV-1 LTR activity.
    Doppler C; Schalasta G; Amtmann E; Sauer G
    AIDS Res Hum Retroviruses; 1992 Feb; 8(2):245-52. PubMed ID: 1540410
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of HIV-1 gene expression by cellular transcription factors.
    Reddy EP; Dasgupta P
    Pathobiology; 1992; 60(4):219-24. PubMed ID: 1388719
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Factors controlling chromatin organization and nucleosome positioning for establishment and maintenance of HIV latency.
    Sadowski I; Lourenco P; Malcolm T
    Curr HIV Res; 2008 Jun; 6(4):286-95. PubMed ID: 18691027
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calcium/calcineurin synergizes with prostratin to promote NF-κB dependent activation of latent HIV.
    Chan JK; Bhattacharyya D; Lassen KG; Ruelas D; Greene WC
    PLoS One; 2013; 8(10):e77749. PubMed ID: 24204950
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mycobacterium tuberculosis mannose-capped lipoarabinomannan can induce NF-kappaB-dependent activation of human immunodeficiency virus type 1 long terminal repeat in T cells.
    Bernier R; Barbeau B; Olivier M; Tremblay MJ
    J Gen Virol; 1998 Jun; 79 ( Pt 6)():1353-61. PubMed ID: 9634075
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synergistic activation of NFAT by HIV-1 nef and the Ras/MAPK pathway.
    Manninen A; Renkema GH; Saksela K
    J Biol Chem; 2000 Jun; 275(22):16513-7. PubMed ID: 10748182
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of HIV-1 transcription by NF-IL6 in activated Jurkat T cells.
    Buckner AE; Tesmer VM; Bina M
    Virus Res; 2002 Oct; 89(1):53-63. PubMed ID: 12367750
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The lipophosphoglycan of Leishmania donovani up-regulates HIV-1 transcription in T cells through the nuclear factor-kappaB elements.
    Bernier R; Barbeau B; Tremblay MJ; Olivier M
    J Immunol; 1998 Mar; 160(6):2881-8. PubMed ID: 9510191
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An in vitro transcription analysis of early responses of the human immunodeficiency virus type 1 long terminal repeat to different transcriptional activators.
    Li YC; Ross J; Scheppler JA; Franza BR
    Mol Cell Biol; 1991 Apr; 11(4):1883-93. PubMed ID: 2005886
    [TBL] [Abstract][Full Text] [Related]  

  • 30. FOXP3 inhibits HIV-1 infection of CD4 T-cells via inhibition of LTR transcriptional activity.
    Selliah N; Zhang M; White S; Zoltick P; Sawaya BE; Finkel TH; Cron RQ
    Virology; 2008 Nov; 381(2):161-7. PubMed ID: 18829063
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of HIV-1 gene expression by NF-IL6.
    Tesmer VM; Bina M
    J Mol Biol; 1996 Sep; 262(3):327-35. PubMed ID: 8844998
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transcriptional suppression of in vitro-integrated human immunodeficiency virus type 1 does not correlate with proviral DNA methylation.
    Pion M; Jordan A; Biancotto A; Dequiedt F; Gondois-Rey F; Rondeau S; Vigne R; Hejnar J; Verdin E; Hirsch I
    J Virol; 2003 Apr; 77(7):4025-32. PubMed ID: 12634362
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differences in transcriptional enhancers of HIV-1 and HIV-2. Response to T cell activation signals.
    Tong-Starksen SE; Welsh TM; Peterlin BM
    J Immunol; 1990 Dec; 145(12):4348-54. PubMed ID: 2258623
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mutational analysis of the HIV-1 LTR as a promoter of negative sense transcription.
    Bentley K; Deacon N; Sonza S; Zeichner S; Churchill M
    Arch Virol; 2004 Dec; 149(12):2277-94. PubMed ID: 15338321
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Activation of the human immunodeficiency virus type I long terminal repeat by 1 alpha,25-dihydroxyvitamin D3.
    Nevado J; Tenbaum SP; Castillo AI; Sánchez-Pacheco A; Aranda A
    J Mol Endocrinol; 2007 Jun; 38(6):587-601. PubMed ID: 17556530
    [TBL] [Abstract][Full Text] [Related]  

  • 36. NF-kappaB-repressing factor inhibits elongation of human immunodeficiency virus type 1 transcription by DRB sensitivity-inducing factor.
    Dreikhausen U; Hiebenthal-Millow K; Bartels M; Resch K; Nourbakhsh M
    Mol Cell Biol; 2005 Sep; 25(17):7473-83. PubMed ID: 16107696
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 5' long terminal repeat (LTR)-selective methylation of latently infected HIV-1 provirus that is demethylated by reactivation signals.
    Ishida T; Hamano A; Koiwa T; Watanabe T
    Retrovirology; 2006 Oct; 3():69. PubMed ID: 17034647
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Naturally occurring human immunodeficiency virus type 1 long terminal repeats have a frequently observed duplication that binds RBF-2 and represses transcription.
    Estable MC; Bell B; Hirst M; Sadowski I
    J Virol; 1998 Aug; 72(8):6465-74. PubMed ID: 9658089
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The long terminal repeats of human immunodeficiency virus type-1 and human T-cell leukemia virus type-I are activated by 12-O-tetradecanoylphorbol-13-acetate through different pathways.
    Mor-Vaknin N; Torgeman A; Galron D; Löchelt M; Flügel RM; Aboud M
    Virology; 1997 Jun; 232(2):337-44. PubMed ID: 9191847
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Long-term suppression of HIV-1C virus production in human peripheral blood mononuclear cells by LTR heterochromatization with a short double-stranded RNA.
    Singh A; Palanichamy JK; Ramalingam P; Kassab MA; Bhagat M; Andrabi R; Luthra K; Sinha S; Chattopadhyay P
    J Antimicrob Chemother; 2014 Feb; 69(2):404-15. PubMed ID: 24022068
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.