These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 17547168)

  • 61. Comparative PM10-PM2.5 source contribution study at rural, urban and industrial sites during PM episodes in Eastern Spain.
    Rodríguez S; Querol X; Alastuey A; Viana MM; Alarcón M; Mantilla E; Ruiz CR
    Sci Total Environ; 2004 Jul; 328(1-3):95-113. PubMed ID: 15207576
    [TBL] [Abstract][Full Text] [Related]  

  • 62. [Analysis of Pollution Characteristics and Sources of PM
    Wu M; Wu D; Xia JR; Zhao TL; Yang QJ
    Huan Jing Ke Xue; 2019 Jan; 40(1):76-85. PubMed ID: 30628261
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Chemical characteristics and influence of continental outflow on PM
    Zhang J; Yang L; Mellouki A; Wen L; Yang Y; Gao Y; Jiang P; Li Y; Wang W
    Sci Total Environ; 2016 Dec; 573():699-706. PubMed ID: 27589821
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The amount of carbon released from peat and forest fires in Indonesia during 1997.
    Page SE; Siegert F; Rieley JO; Boehm HD; Jaya A; Limin S
    Nature; 2002 Nov; 420(6911):61-5. PubMed ID: 12422213
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Concentration and chemical characteristics of PM2.5 in Beijing, China: 2001-2002.
    Duan FK; He KB; Ma YL; Yang FM; Yu XC; Cadle SH; Chan T; Mulawa PA
    Sci Total Environ; 2006 Feb; 355(1-3):264-75. PubMed ID: 16185747
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Fine particulate speciation profile and emission factor of municipal solid waste incinerator established by dilution sampling method.
    Yang HH; Luo SW; Lee KT; Wu JY; Chang CW; Chu PF
    J Air Waste Manag Assoc; 2016 Aug; 66(8):807-14. PubMed ID: 27366931
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Particulate air pollution from bushfires: human exposure and possible health effects.
    Karthikeyan S; Balasubramanian R; Iouri K
    J Toxicol Environ Health A; 2006 Nov; 69(21):1895-908. PubMed ID: 16982529
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Influence of fireworks displays on the chemical characteristics of PM
    Zhang J; Yang L; Chen J; Mellouki A; Jiang P; Gao Y; Li Y; Yang Y; Wang W
    Sci Total Environ; 2017 Feb; 578():476-484. PubMed ID: 27836342
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Source contributions to fine particulate matter in an urban atmosphere.
    Park SS; Kim YJ
    Chemosphere; 2005 Apr; 59(2):217-26. PubMed ID: 15722093
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Contributions of local and regional anthropogenic sources of metals in PM
    Ledoux F; Kfoury A; Delmaire G; Roussel G; El Zein A; Courcot D
    Chemosphere; 2017 Aug; 181():713-724. PubMed ID: 28477528
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Size-resolved aerosol chemical analysis of extreme haze pollution events during early 2013 in urban Beijing, China.
    Tian S; Pan Y; Liu Z; Wen T; Wang Y
    J Hazard Mater; 2014 Aug; 279():452-60. PubMed ID: 25106045
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Receptor modelling of airborne particulate matter in the vicinity of a major steelworks site.
    Taiwo AM; Beddows DC; Calzolai G; Harrison RM; Lucarelli F; Nava S; Shi Z; Valli G; Vecchi R
    Sci Total Environ; 2014 Aug; 490():488-500. PubMed ID: 24875261
    [TBL] [Abstract][Full Text] [Related]  

  • 73. [Chemical characteristics of water-soluble components of aerosol particles at different altitudes of the Mount Huang in the summer].
    Wen B; Yin Y; Qing YS; Chen K
    Huan Jing Ke Xue; 2013 May; 34(5):1973-81. PubMed ID: 23914556
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Chemical characterization and sources of personal exposure to fine particulate matter (PM
    Chen XC; Jahn HJ; Engling G; Ward TJ; Kraemer A; Ho KF; Yim SHL; Chan CY
    Environ Pollut; 2017 Dec; 231(Pt 1):871-881. PubMed ID: 28886532
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Elucidating molecular level impact of peat fire on soil organic matter by laser desorption ionization Fourier transform ion cyclotron resonance mass spectrometry.
    Solihat NN; Yustiawati ; Kim S; Kim S
    Anal Bioanal Chem; 2019 Nov; 411(27):7303-7313. PubMed ID: 31511945
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Chemical speciation of PM2.5 collected during prescribed fires of the Coconino National Forest near Flagstaff, Arizona.
    Robinson MS; Chavez J; Velazquez S; Jayanty RK
    J Air Waste Manag Assoc; 2004 Sep; 54(9):1112-23. PubMed ID: 15468664
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Top-Down Estimation of Particulate Matter Emissions from Extreme Tropical Peatland Fires Using Geostationary Satellite Fire Radiative Power Observations.
    Fisher D; Wooster MJ; Xu W; Thomas G; Lestari P
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33322056
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Long-time risk of groundwater/drinking water pollution with sulphuric compounds beneath burned peatlands in Indonesia.
    Hammen VC
    Water Sci Technol; 2007; 56(1):253-8. PubMed ID: 17711022
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Accuracy of tropical peat and non-peat fire forecasts enhanced by simulating hydrology.
    Mezbahuddin S; Nikonovas T; Spessa A; Grant RF; Imron MA; Doerr SH; Clay GD
    Sci Rep; 2023 Jan; 13(1):619. PubMed ID: 36635311
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Evaluation of change in the peat soil properties affected by different fire severities.
    Fulazzaky MA; Ismail I; Harlen H; Sukendi S; Roestamy M; Siregar YI
    Environ Monit Assess; 2022 Sep; 194(10):783. PubMed ID: 36098855
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.