These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 17547419)
1. Phenolics in maize genotypes differing in susceptibility to Gibberella stalk rot (Fusarium graminearum Schwabe). Santiago R; Reid LM; Arnason JT; Zhu X; Martinez N; Malvar RA J Agric Food Chem; 2007 Jun; 55(13):5186-93. PubMed ID: 17547419 [TBL] [Abstract][Full Text] [Related]
2. Possible role of plant phenolics in the production of trichothecenes by Fusarium graminearum strains on different fractions of maize kernels. Bakan B; Bily AC; Melcion D; Cahagnier B; Regnault-Roger C; Philogène BJ; Richard-Molard D J Agric Food Chem; 2003 Apr; 51(9):2826-31. PubMed ID: 12696980 [TBL] [Abstract][Full Text] [Related]
3. Dehydrodimers of Ferulic Acid in Maize Grain Pericarp and Aleurone: Resistance Factors to Fusarium graminearum. Bily AC; Reid LM; Taylor JH; Johnston D; Malouin C; Burt AJ; Bakan B; Regnault-Roger C; Pauls KP; Arnason JT; Philogène BJ Phytopathology; 2003 Jun; 93(6):712-9. PubMed ID: 18943058 [TBL] [Abstract][Full Text] [Related]
4. Changes in phenolic concentrations during recurrent selection for resistance to the Mediterranean corn borer (Sesamia nonagrioides Lef.). Santiago R; Sandoya G; Butrón A; Barros J; Malvar RA J Agric Food Chem; 2008 Sep; 56(17):8017-22. PubMed ID: 18656924 [TBL] [Abstract][Full Text] [Related]
5. Role of hydroxycinnamic acids in the infection of maize silks by Fusarium graminearum Schwabe. Cao A; Reid LM; Butrón A; Malvar RA; Souto XC; Santiago R Mol Plant Microbe Interact; 2011 Sep; 24(9):1020-6. PubMed ID: 21635140 [TBL] [Abstract][Full Text] [Related]
6. Long chain alkanes in silk extracts of maize genotypes with varying resistance to Fusarium graminearum. Miller SS; Reid LM; Butler G; Winter SP; McGoldrick NJ J Agric Food Chem; 2003 Nov; 51(23):6702-8. PubMed ID: 14582963 [TBL] [Abstract][Full Text] [Related]
7. Proteomic profiling of two maize inbreds during early gibberella ear rot infection. Mohammadi M; Anoop V; Gleddie S; Harris LJ Proteomics; 2011 Sep; 11(18):3675-84. PubMed ID: 21751381 [TBL] [Abstract][Full Text] [Related]
8. Susceptibility of Maize to Stalk Rot Caused by Fusarium graminearum Deoxynivalenol and Zearalenone Mutants. Quesada-Ocampo LM; Al-Haddad J; Scruggs AC; Buell CR; Trail F Phytopathology; 2016 Aug; 106(8):920-7. PubMed ID: 27050573 [TBL] [Abstract][Full Text] [Related]
9. Transcriptome analysis of maize resistance to Fusarium graminearum. Liu Y; Guo Y; Ma C; Zhang D; Wang C; Yang Q BMC Genomics; 2016 Jun; 17():477. PubMed ID: 27352627 [TBL] [Abstract][Full Text] [Related]
10. Pre-harvest accumulation of deoxynivalenol in sweet corn ears inoculated with Fusarium graminearum. Reid LM; Zhu X; Savard ME; Sinha RC; Vigier B Food Addit Contam; 2000 Aug; 17(8):689-701. PubMed ID: 11027030 [TBL] [Abstract][Full Text] [Related]
11. Transcriptome profiling of two maize inbreds with distinct responses to Gibberella ear rot disease to identify candidate resistance genes. Kebede AZ; Johnston A; Schneiderman D; Bosnich W; Harris LJ BMC Genomics; 2018 Feb; 19(1):131. PubMed ID: 29426290 [TBL] [Abstract][Full Text] [Related]
12. Inhibition of non-enzymatic glycation by silk extracts from a Mexican land race and modern inbred lines of maize (Zea mays). Farsi DA; Harris CS; Reid L; Bennett SA; Haddad PS; Martineau LC; Arnason JT Phytother Res; 2008 Jan; 22(1):108-12. PubMed ID: 17724765 [TBL] [Abstract][Full Text] [Related]
13. Chlorogenic acid and maize ear rot resistance: a dynamic study investigating Fusarium graminearum development, deoxynivalenol production, and phenolic acid accumulation. Atanasova-Penichon V; Pons S; Pinson-Gadais L; Picot A; Marchegay G; Bonnin-Verdal MN; Ducos C; Barreau C; Roucolle J; Sehabiague P; Carolo P; Richard-Forget F Mol Plant Microbe Interact; 2012 Dec; 25(12):1605-16. PubMed ID: 23035912 [TBL] [Abstract][Full Text] [Related]
15. Biodiversity of complexes of mycotoxigenic fungal species associated with Fusarium ear rot of maize and Aspergillus rot of grape. Logrieco A; Moretti A; Perrone G; Mulè G Int J Food Microbiol; 2007 Oct; 119(1-2):11-6. PubMed ID: 17765992 [TBL] [Abstract][Full Text] [Related]
16. qRfg3, a novel quantitative resistance locus against Gibberella stalk rot in maize. Ma C; Ma X; Yao L; Liu Y; Du F; Yang X; Xu M Theor Appl Genet; 2017 Aug; 130(8):1723-1734. PubMed ID: 28555262 [TBL] [Abstract][Full Text] [Related]
17. Impact of transgenic Bt maize residues on the mycotoxigenic plant pathogen Fusarium graminearum and the biocontrol agent Trichoderma atroviride. Naef A; Zesiger T; Défago G J Environ Qual; 2006; 35(4):1001-9. PubMed ID: 16738384 [TBL] [Abstract][Full Text] [Related]
18. Effects of fusarium infection on the phenolics in emmer and naked barley. Eggert K; Hollmann J; Hiller B; Kruse HP; Rawel HM; Pawelzik E J Agric Food Chem; 2010 Mar; 58(5):3043-9. PubMed ID: 20143853 [TBL] [Abstract][Full Text] [Related]
19. A guanylyl cyclase-like gene is associated with Gibberella ear rot resistance in maize (Zea mays L.). Yuan J; Liakat Ali M; Taylor J; Liu J; Sun G; Liu W; Masilimany P; Gulati-Sakhuja A; Pauls KP Theor Appl Genet; 2008 Feb; 116(4):465-79. PubMed ID: 18074115 [TBL] [Abstract][Full Text] [Related]
20. A major QTL for resistance to Gibberella stalk rot in maize. Yang Q; Yin G; Guo Y; Zhang D; Chen S; Xu M Theor Appl Genet; 2010 Aug; 121(4):673-87. PubMed ID: 20401458 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]