BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 17547676)

  • 1. Wide geographical and ecological distribution of nitrogen and carbon gains from fungi in pyroloids and monotropoids (Ericaceae) and in orchids.
    Zimmer K; Hynson NA; Gebauer G; Allen EB; Allen MF; Read DJ
    New Phytol; 2007; 175(1):166-175. PubMed ID: 17547676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A methodological approach to improve estimates of nutrient gains by partially myco-heterotrophic plants.
    Preiss K; Gebauer G
    Isotopes Environ Health Stud; 2008 Dec; 44(4):393-401. PubMed ID: 19061069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isotopic evidence of full and partial myco-heterotrophy in the plant tribe Pyroleae (Ericaceae).
    Hynson NA; Preiss K; Gebauer G; Bruns TD
    New Phytol; 2009; 182(3):719-726. PubMed ID: 19309446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ectomycorrhizal specialist orchid Corallorhiza trifida is a partial myco-heterotroph.
    Zimmer K; Meyer C; Gebauer G
    New Phytol; 2008; 178(2):395-400. PubMed ID: 18221248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Irradiance governs exploitation of fungi: fine-tuning of carbon gain by two partially myco-heterotrophic orchids.
    Preiss K; Adam IK; Gebauer G
    Proc Biol Sci; 2010 May; 277(1686):1333-6. PubMed ID: 20053652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mixotrophy in Pyroleae (Ericaceae) from Estonian boreal forests does not vary with light or tissue age.
    Lallemand F; Puttsepp Ü; Lang M; Luud A; Courty PE; Palancade C; Selosse MA
    Ann Bot; 2017 Sep; 120(3):361-371. PubMed ID: 28575199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Partial mycoheterotrophy in Pyroleae: nitrogen and carbon stable isotope signatures during development from seedling to adult.
    Johansson VA; Mikusinska A; Ekblad A; Eriksson O
    Oecologia; 2015 Jan; 177(1):203-11. PubMed ID: 25395312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon and nitrogen gain during the growth of orchid seedlings in nature.
    Stöckel M; Těšitelová T; Jersáková J; Bidartondo MI; Gebauer G
    New Phytol; 2014 Apr; 202(2):606-615. PubMed ID: 24444001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant family identity distinguishes patterns of carbon and nitrogen stable isotope abundance and nitrogen concentration in mycoheterotrophic plants associated with ectomycorrhizal fungi.
    Hynson NA; Schiebold JM; Gebauer G
    Ann Bot; 2016 Sep; 118(3):467-79. PubMed ID: 27451987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stable isotope signatures confirm carbon and nitrogen gain through ectomycorrhizas in the ghost orchid Epipogium aphyllum Swartz.
    Liebel HT; Gebauer G
    Plant Biol (Stuttg); 2011 Mar; 13(2):270-5. PubMed ID: 21309973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence of a myco-heterotroph in the plant family Ericaceae that lacks mycorrhizal specificity.
    Hynson NA; Bruns TD
    Proc Biol Sci; 2009 Nov; 276(1675):4053-9. PubMed ID: 19740879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Limited carbon and mineral nutrient gain from mycorrhizal fungi by adult Australian orchids.
    Sommer J; Pausch J; Brundrett MC; Dixon KW; Bidartondo MI; Gebauer G
    Am J Bot; 2012 Jul; 99(7):1133-45. PubMed ID: 22753812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parallel evolutionary paths to mycoheterotrophy in understorey Ericaceae and Orchidaceae: ecological evidence for mixotrophy in Pyroleae.
    Tedersoo L; Pellet P; Kõljalg U; Selosse MA
    Oecologia; 2007 Mar; 151(2):206-17. PubMed ID: 17089139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myco-heterotroph/epiparasitic plant interactions with ectomycorrhizal and arbuscular mycorrhizal fungi.
    Leake JR
    Curr Opin Plant Biol; 2004 Aug; 7(4):422-8. PubMed ID: 15231265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring carbon gains from fungal networks in understory plants from the tribe Pyroleae (Ericaceae): a field manipulation and stable isotope approach.
    Hynson NA; Mambelli S; Amend AS; Dawson TE
    Oecologia; 2012 Jun; 169(2):307-17. PubMed ID: 22108855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilisation of carbon substrates by orchid and ericoid mycorrhizal fungi from Australian dry sclerophyll forests.
    Midgley DJ; Jordan LA; Saleeba JA; McGee PA
    Mycorrhiza; 2006 May; 16(3):175-182. PubMed ID: 16374622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seasonal and environmental changes of mycorrhizal associations and heterotrophy levels in mixotrophic Pyrola japonica (Ericaceae) growing under different light environments.
    Matsuda Y; Shimizu S; Mori M; Ito S; Selosse MA
    Am J Bot; 2012 Jul; 99(7):1177-88. PubMed ID: 22739710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Do chlorophyllous orchids heterotrophically use mycorrhizal fungal carbon?
    Selosse MA; Martos F
    Trends Plant Sci; 2014 Nov; 19(11):683-5. PubMed ID: 25278267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for newly discovered albino mutants in a pyroloid: implication for the nutritional mode in the genus Pyrola.
    Shutoh K; Tajima Y; Matsubayashi J; Tayasu I; Kato S; Shiga T; Suetsugu K
    Am J Bot; 2020 Apr; 107(4):650-657. PubMed ID: 32304099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photosynthetic Mediterranean meadow orchids feature partial mycoheterotrophy and specific mycorrhizal associations.
    Girlanda M; Segreto R; Cafasso D; Liebel HT; Rodda M; Ercole E; Cozzolino S; Gebauer G; Perotto S
    Am J Bot; 2011 Jul; 98(7):1148-63. PubMed ID: 21712419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.