These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
600 related articles for article (PubMed ID: 17549731)
41. The role of thrombospondin-1 and transforming growth factor-beta after spinal cord injury in the rat. Wang X; Chen W; Liu W; Wu J; Shao Y; Zhang X J Clin Neurosci; 2009 Jun; 16(6):818-21. PubMed ID: 19342245 [TBL] [Abstract][Full Text] [Related]
42. Graft of pre-injured sural nerve promotes regeneration of corticospinal tract and functional recovery in rats with chronic spinal cord injury. Feng SQ; Zhou XF; Rush RA; Ferguson IA Brain Res; 2008 May; 1209():40-8. PubMed ID: 18405884 [TBL] [Abstract][Full Text] [Related]
43. Hepatocyte growth factor stimulates the proliferation and migration of oligodendrocyte precursor cells. Yan H; Rivkees SA J Neurosci Res; 2002 Sep; 69(5):597-606. PubMed ID: 12210825 [TBL] [Abstract][Full Text] [Related]
44. Light promotes regeneration and functional recovery and alters the immune response after spinal cord injury. Byrnes KR; Waynant RW; Ilev IK; Wu X; Barna L; Smith K; Heckert R; Gerst H; Anders JJ Lasers Surg Med; 2005 Mar; 36(3):171-85. PubMed ID: 15704098 [TBL] [Abstract][Full Text] [Related]
45. The promotion of neural regeneration in an extreme rat spinal cord injury model using a collagen scaffold containing a collagen binding neuroprotective protein and an EGFR neutralizing antibody. Han Q; Jin W; Xiao Z; Ni H; Wang J; Kong J; Wu J; Liang W; Chen L; Zhao Y; Chen B; Dai J Biomaterials; 2010 Dec; 31(35):9212-20. PubMed ID: 20869112 [TBL] [Abstract][Full Text] [Related]
46. Partial functional recovery of paraplegic rat by adenovirus-mediated gene delivery of constitutively active MEK1. Miura T; Tanaka S; Seichi A; Arai M; Goto T; Katagiri H; Asano T; Oda H; Nakamura K Exp Neurol; 2000 Nov; 166(1):115-26. PubMed ID: 11031088 [TBL] [Abstract][Full Text] [Related]
47. Expression of hepatocyte growth factor and the proto-oncogenic receptor c-Met in canine osteosarcoma. Fieten H; Spee B; Ijzer J; Kik MJ; Penning LC; Kirpensteijn J Vet Pathol; 2009 Sep; 46(5):869-77. PubMed ID: 19429984 [TBL] [Abstract][Full Text] [Related]
48. Expression of Slit2 and Robo1 after traumatic lesions of the rat spinal cord. Liu JB; Jiang YQ; Gong AH; Zhang ZJ; Jiang Q; Chu XP Acta Histochem; 2011 Jan; 113(1):43-8. PubMed ID: 19783284 [TBL] [Abstract][Full Text] [Related]
49. Relationship between the proliferative capability of hepatocytes and the intrahepatic expression of hepatocyte growth factor and c-Met in the course of cirrhosis development in rats. Inoue H; Yokoyama F; Kita Y; Yoshiji H; Tsujimoto T; Deguchi A; Nakai S; Morishita A; Uchida N; Masaki T; Watanabe S; Kuriyama S Int J Mol Med; 2006 May; 17(5):857-64. PubMed ID: 16596271 [TBL] [Abstract][Full Text] [Related]
51. A combination of intravenous and dietary docosahexaenoic acid significantly improves outcome after spinal cord injury. Huang WL; King VR; Curran OE; Dyall SC; Ward RE; Lal N; Priestley JV; Michael-Titus AT Brain; 2007 Nov; 130(Pt 11):3004-19. PubMed ID: 17901087 [TBL] [Abstract][Full Text] [Related]
52. Nano PGE1 promoted the recovery from spinal cord injury-induced motor dysfunction through its accumulation and sustained release. Takenaga M; Ishihara T; Ohta Y; Tokura Y; Hamaguchi A; Igarashi R; Mizushima T J Control Release; 2010 Dec; 148(2):249-54. PubMed ID: 20709122 [TBL] [Abstract][Full Text] [Related]
53. The neuroprotective effects of Reg-2 following spinal cord transection injury. Fang M; Wang J; Huang JY; Ling SC; Rudd JA; Hu ZY; Yew DT; Han S Anat Rec (Hoboken); 2011 Jan; 294(1):24-45. PubMed ID: 21157914 [TBL] [Abstract][Full Text] [Related]
54. Chronic transplantation of olfactory ensheathing cells promotes partial recovery after complete spinal cord transection in the rat. López-Vales R; Forés J; Navarro X; Verdú E Glia; 2007 Feb; 55(3):303-11. PubMed ID: 17096411 [TBL] [Abstract][Full Text] [Related]
55. Circulating insulin-like growth factor I and functional recovery from spinal cord injury under enriched housing conditions. Koopmans GC; Brans M; Gómez-Pinilla F; Duis S; Gispen WH; Torres-Aleman I; Joosten EA; Hamers FP Eur J Neurosci; 2006 Feb; 23(4):1035-46. PubMed ID: 16519668 [TBL] [Abstract][Full Text] [Related]
57. Protection of erythropoietin on experimental spinal cord injury by reducing the expression of thrombospondin-1 and transforming growth factor-beta. Fang XQ; Fang M; Fan SW; Gu CL Chin Med J (Engl); 2009 Jul; 122(14):1631-5. PubMed ID: 19719963 [TBL] [Abstract][Full Text] [Related]
58. Effects of autoimmunity on recovery of function in adult rats following spinal cord injury. Lü HZ; Xu L; Zou J; Wang YX; Ma ZW; Xu XM; Lu PH Brain Behav Immun; 2008 Nov; 22(8):1217-30. PubMed ID: 18625299 [TBL] [Abstract][Full Text] [Related]
59. Survival and regeneration of rubrospinal neurons 1 year after spinal cord injury. Kwon BK; Liu J; Messerer C; Kobayashi NR; McGraw J; Oschipok L; Tetzlaff W Proc Natl Acad Sci U S A; 2002 Mar; 99(5):3246-51. PubMed ID: 11867727 [TBL] [Abstract][Full Text] [Related]
60. Application of Hepatocyte Growth Factor for Acute Spinal Cord Injury: The Road from Basic Studies to Human Treatment. Kitamura K; Nagoshi N; Tsuji O; Matsumoto M; Okano H; Nakamura M Int J Mol Sci; 2019 Feb; 20(5):. PubMed ID: 30823442 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]