BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 17550115)

  • 1. Adaptive robust motion/force control of holonomic-constrained nonholonomic mobile manipulators.
    Li Z; Ge SS; Ming A
    IEEE Trans Syst Man Cybern B Cybern; 2007 Jun; 37(3):607-16. PubMed ID: 17550115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust adaptive control of cooperating mobile manipulators with relative motion.
    Li Z; Tao PY; Ge SS; Adams M; Wijesoma WS
    IEEE Trans Syst Man Cybern B Cybern; 2009 Feb; 39(1):103-16. PubMed ID: 19150761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust adaptive motion/force control scheme for crawler-type mobile manipulator with nonholonomic constraint based on sliding mode control approach.
    Peng J; Yang Z; Wang Y; Zhang F; Liu Y
    ISA Trans; 2019 Sep; 92():166-179. PubMed ID: 30837125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust adaptive tracking control for nonholonomic mobile manipulator with uncertainties.
    Peng J; Yu J; Wang J
    ISA Trans; 2014 Jul; 53(4):1035-43. PubMed ID: 24917071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constrained motion control of flexible robot manipulators based on recurrent neural networks.
    Tian L; Wang J; Mao Z
    IEEE Trans Syst Man Cybern B Cybern; 2004 Jun; 34(3):1541-52. PubMed ID: 15484923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robustly stable adaptive control of a tandem of master-slave robotic manipulators with force reflection by using a multiestimation scheme.
    Ibeas A; de la Sen M
    IEEE Trans Syst Man Cybern B Cybern; 2006 Oct; 36(5):1162-79. PubMed ID: 17036821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flocking of multiple mobile robots based on backstepping.
    Dong W
    IEEE Trans Syst Man Cybern B Cybern; 2011 Apr; 41(2):414-24. PubMed ID: 20709643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GPI based velocity/force observer design for robot manipulators.
    Gutiérrez-Giles A; Arteaga-Pérez MA
    ISA Trans; 2014 Jul; 53(4):929-38. PubMed ID: 24780160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive output feedback control of flexible-joint robots using neural networks: dynamic surface design approach.
    Yoo SJ; Park JB; Choi YH
    IEEE Trans Neural Netw; 2008 Oct; 19(10):1712-26. PubMed ID: 18842476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recurrent fuzzy neural network backstepping control for the prescribed output tracking performance of nonlinear dynamic systems.
    Han SI; Lee JM
    ISA Trans; 2014 Jan; 53(1):33-43. PubMed ID: 24055100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive fuzzy neural network control design via a T-S fuzzy model for a robot manipulator including actuator dynamics.
    Wai RJ; Yang ZW
    IEEE Trans Syst Man Cybern B Cybern; 2008 Oct; 38(5):1326-46. PubMed ID: 18784015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Full-state tracking control of a mobile robot using neural networks.
    Chaitanya VS
    Int J Neural Syst; 2005 Oct; 15(5):403-14. PubMed ID: 16278944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trajectory tracking control of omnidirectional wheeled mobile manipulators: robust neural network-based sliding mode approach.
    Xu D; Zhao D; Yi J; Tan X
    IEEE Trans Syst Man Cybern B Cybern; 2009 Jun; 39(3):788-99. PubMed ID: 19336336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intelligent robust tracking control for a class of uncertain strict-feedback nonlinear systems.
    Chang YC
    IEEE Trans Syst Man Cybern B Cybern; 2009 Feb; 39(1):142-55. PubMed ID: 19150764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new performance index for the repetitive motion of mobile manipulators.
    Xiao L; Zhang Y
    IEEE Trans Cybern; 2014 Feb; 44(2):280-92. PubMed ID: 23757549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A double-loop structure in the adaptive generalized predictive control algorithm for control of robot end-point contact force.
    Wen S; Zhu J; Li X; Chen S
    ISA Trans; 2014 Sep; 53(5):1603-8. PubMed ID: 24973336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural-adaptive control of single-master-multiple-slaves teleoperation for coordinated multiple mobile manipulators with time-varying communication delays and input uncertainties.
    Li Z; Su CY
    IEEE Trans Neural Netw Learn Syst; 2013 Sep; 24(9):1400-13. PubMed ID: 24808577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive fuzzy decentralized control for large-scale nonlinear systems with time-varying delays and unknown high-frequency gain sign.
    Tong S; Liu C; Li Y; Zhang H
    IEEE Trans Syst Man Cybern B Cybern; 2011 Apr; 41(2):474-85. PubMed ID: 20716504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fractional fuzzy adaptive sliding-mode control of a 2-DOF direct-drive robot arm.
    Efe MO
    IEEE Trans Syst Man Cybern B Cybern; 2008 Dec; 38(6):1561-70. PubMed ID: 19022726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchical finite-time cooperative control for teleoperation of networked disturbed mobile manipulators.
    Fu J; Xu JZ; Ge MF; Ding TF; Park JH
    ISA Trans; 2023 Sep; 140():266-278. PubMed ID: 37301648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.