These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 17550150)

  • 1. Generation of shock-free pressure waves in shaped resonators by boundary driving.
    Luo C; Huang XY; Nguyen NT
    J Acoust Soc Am; 2007 May; 121(5 Pt1):2515-21. PubMed ID: 17550150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of resonator dimensions on nonlinear standing waves.
    Luo C; Huang XY; Nguyen NT
    J Acoust Soc Am; 2005 Jan; 117(1):96-103. PubMed ID: 15704402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal shaping of acoustic resonators for the generation of high-amplitude standing waves.
    Červenka M; Šoltés M; Bednařík M
    J Acoust Soc Am; 2014 Sep; 136(3):1003. PubMed ID: 25190376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High amplitude nonlinear acoustic wave driven flow fields in cylindrical and conical resonators.
    Antao DS; Farouk B
    J Acoust Soc Am; 2013 Aug; 134(2):917-32. PubMed ID: 23927091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of tube geometry on the performance of standing-wave acoustic resonators.
    Feng H; Peng Y; Zhang X; Li X
    J Acoust Soc Am; 2018 Sep; 144(3):1443. PubMed ID: 30424619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustically driven oscillatory flow fields in a cylindrical resonator at resonance.
    Farouk B; Antao DS; Hasan N
    J Acoust Soc Am; 2019 May; 145(5):2932. PubMed ID: 31153354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spurious resonance suppression in gigahertz-range ZnO thin-film bulk acoustic wave resonators by the boundary frame method: modeling and experiment.
    Pensala T; Ylilammi M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Aug; 56(8):1731-44. PubMed ID: 19686989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear standing waves in 2-D acoustic resonators.
    Cervenka M; Bednarik M
    Ultrasonics; 2006 Dec; 44 Suppl 1():e773-6. PubMed ID: 16780910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling of finite amplitude acoustic waves in closed cavities using the Galerkin method.
    Erickson RR; Zinn BT
    J Acoust Soc Am; 2003 Apr; 113(4 Pt 1):1863-70. PubMed ID: 12703698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of random surface inhomogeneities on spectral properties of dielectric-disk microresonators: theory and modeling at millimeter wave range.
    Ganapolskii EM; Eremenko ZE; Tarasov YV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041136. PubMed ID: 19518202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noise control in enclosures: modeling and experiments with T-shaped acoustic resonators.
    Li D; Cheng L; Yu GH; Vipperman JS
    J Acoust Soc Am; 2007 Nov; 122(5):2615-25. PubMed ID: 18189553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency response of nonlinear oscillations of air column in a tube with an array of Helmholtz resonators.
    Sugimoto N; Masuda M; Hashiguchi T
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):1772-84. PubMed ID: 14587579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Radial Electric Field Excited Circular Disk Piezoceramic Acoustic Resonator and Its Properties.
    Teplykh A; Zaitsev B; Semyonov A; Borodina I
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33477254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The sensor for measuring the micro-displacements based on the piezoelectric resonator with lateral electric field.
    Zaitsev BD; Semyonov AP; Teplykh AA; Borodina IA
    Ultrasonics; 2019 Nov; 99():105973. PubMed ID: 31398496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Main Lateral Mode Approximation of a Film Bulk Acoustic Resonator With Perfect Metal Electrodes.
    Jamneala T; Kirkendall C; Ivira B; Thalhammer RK; Bradley P; Ruby R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Sep; 65(9):1703-1716. PubMed ID: 29994250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scattering of flexural waves from an N-beam resonator in a thin plate.
    Climente A; Gao P; Wu L; Sánchez-Dehesa J
    J Acoust Soc Am; 2017 Nov; 142(5):3205. PubMed ID: 29195476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Helmholtz resonator with extended neck.
    Selamet A; Lee I
    J Acoust Soc Am; 2003 Apr; 113(4 Pt 1):1975-85. PubMed ID: 12703708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Study of the Acoustic Characteristics of Chitosan Acetate Film Using a Radial Electric Field Excited Resonator.
    Teplykh A; Zaitsev B; Semyonov A; Borodina I
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of Parametric and Subharmonic Excitation in Push-Pull Driven Disk Resonator Gyroscopes.
    Wu K; Lu K; Li Q; Zhang Y; Zhuo M; Yu S; Wu X; Xiao D
    Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33419169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observation of energy cascade creating periodic shock waves in a resonator.
    Biwa T; Yazaki T
    J Acoust Soc Am; 2010 Mar; 127(3):1189-92. PubMed ID: 20329816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.