These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Frequency tuning of mechanical responses in the mammalian cochlea. Robles L; Alcayaga C Biol Res; 1996; 29(3):325-31. PubMed ID: 9278704 [TBL] [Abstract][Full Text] [Related]
24. The mechanical waveform of the basilar membrane. II. From data to models--and back. de Boer E; Nuttall AL J Acoust Soc Am; 2000 Mar; 107(3):1487-96. PubMed ID: 10738803 [TBL] [Abstract][Full Text] [Related]
26. Significance of the Microfluidic Flow Inside the Organ of Corti. Zagadou BF; Barbone PE; Mountain DC J Biomech Eng; 2020 Aug; 142(8):. PubMed ID: 32154838 [TBL] [Abstract][Full Text] [Related]
28. Stiffness of the gerbil basilar membrane: radial and longitudinal variations. Emadi G; Richter CP; Dallos P J Neurophysiol; 2004 Jan; 91(1):474-88. PubMed ID: 14523077 [TBL] [Abstract][Full Text] [Related]
29. Cochlear mechanisms at low frequencies in the guinea pig. Franke R; Dancer A Arch Otorhinolaryngol; 1982; 234(2):213-8. PubMed ID: 7092710 [TBL] [Abstract][Full Text] [Related]
30. How can the cochlear amplifier be realized by the outer hair cells which have nothing to push against? Fukazawa T Hear Res; 2002 Oct; 172(1-2):53-61. PubMed ID: 12361866 [TBL] [Abstract][Full Text] [Related]
31. Coupling active hair bundle mechanics, fast adaptation, and somatic motility in a cochlear model. Meaud J; Grosh K Biophys J; 2011 Jun; 100(11):2576-85. PubMed ID: 21641302 [TBL] [Abstract][Full Text] [Related]
32. Development of an electrode for the artificial cochlear sensory epithelium. Tona Y; Inaoka T; Ito J; Kawano S; Nakagawa T Hear Res; 2015 Dec; 330(Pt A):106-12. PubMed ID: 26299844 [TBL] [Abstract][Full Text] [Related]
33. Electromotile hearing: acoustic tones mask psychophysical response to high-frequency electrical stimulation of intact guinea pig cochleae. Le Prell CG; Kawamoto K; Raphael Y; Dolan DF J Acoust Soc Am; 2006 Dec; 120(6):3889-900. PubMed ID: 17225416 [TBL] [Abstract][Full Text] [Related]
34. Frequency glides in click responses of the basilar membrane and auditory nerve: their scaling behavior and origin in traveling-wave dispersion. Shera CA J Acoust Soc Am; 2001 May; 109(5 Pt 1):2023-34. PubMed ID: 11386555 [TBL] [Abstract][Full Text] [Related]
35. Timing of cochlear feedback: spatial and temporal representation of a tone across the basilar membrane. Nilsen KE; Russell IJ Nat Neurosci; 1999 Jul; 2(7):642-8. PubMed ID: 10404197 [TBL] [Abstract][Full Text] [Related]
36. [Effects of direct current on vibration of cochlear basilar membrane]. Guo M Zhonghua Er Bi Yan Hou Ke Za Zhi; 2001 Oct; 36(5):338-41. PubMed ID: 12761940 [TBL] [Abstract][Full Text] [Related]
37. A cochlear model using feedback from motile outer hair cells. Geisler CD Hear Res; 1991 Jul; 54(1):105-17. PubMed ID: 1917709 [TBL] [Abstract][Full Text] [Related]
38. A traveling-wave amplifier model of the cochlea. Hubbard A Science; 1993 Jan; 259(5091):68-71. PubMed ID: 8418496 [TBL] [Abstract][Full Text] [Related]
39. Mechanical tuning and amplification within the apex of the guinea pig cochlea. Recio-Spinoso A; Oghalai JS J Physiol; 2017 Jul; 595(13):4549-4561. PubMed ID: 28382742 [TBL] [Abstract][Full Text] [Related]
40. The influence on predicted harmonic and distortion product generation of the position of the nonlinearity within cochlear micromechanical models. How JA; Elliott SJ; Lineton B J Acoust Soc Am; 2010 Feb; 127(2):652-5. PubMed ID: 20136186 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]