These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 17550180)

  • 21. A cylindrical cochlea model: the bridge between two and three dimensions.
    de Boer E
    Hear Res; 1980 Aug; 3(2):109-31. PubMed ID: 7419481
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison between otoacoustic and auditory brainstem response latencies supports slow backward propagation of otoacoustic emissions.
    Moleti A; Sisto R
    J Acoust Soc Am; 2008 Mar; 123(3):1495-503. PubMed ID: 18345838
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of coiling on the micromechanics of the mammalian cochlea.
    Cai H; Manoussaki D; Chadwick R
    J R Soc Interface; 2005 Sep; 2(4):341-8. PubMed ID: 16849192
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The cochlear amplifier as a standing wave: "squirting" waves between rows of outer hair cells?
    Bell A; Fletcher NH
    J Acoust Soc Am; 2004 Aug; 116(2):1016-24. PubMed ID: 15376668
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dual traveling waves in an inner ear model with two degrees of freedom.
    Lamb JS; Chadwick RS
    Phys Rev Lett; 2011 Aug; 107(8):088101. PubMed ID: 21929207
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Different models of the active cochlea, and how to implement them in the state-space formalism.
    Sisto R; Moleti A; Paternoster N; Botti T; Bertaccini D
    J Acoust Soc Am; 2010 Sep; 128(3):1191-202. PubMed ID: 20815455
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A mechano-electro-acoustical model for the cochlea: response to acoustic stimuli.
    Ramamoorthy S; Deo NV; Grosh K
    J Acoust Soc Am; 2007 May; 121(5 Pt1):2758-73. PubMed ID: 17550176
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Do forward- and backward-traveling waves occur within the cochlea? Countering the critique of Nobili et al.
    Shera CA; Tubis A; Talmadge CL
    J Assoc Res Otolaryngol; 2004 Dec; 5(4):349-59. PubMed ID: 15675000
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Using acoustic distortion products to measure the cochlear amplifier gain on the basilar membrane.
    Allen JB; Fahey PF
    J Acoust Soc Am; 1992 Jul; 92(1):178-88. PubMed ID: 1512322
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wave propagation patterns in a "classical" three-dimensional model of the cochlea.
    de Boer E; Nuttall AL; Shera CA
    J Acoust Soc Am; 2007 Jan; 121(1):352-62. PubMed ID: 17297790
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Direct measurement of intra-cochlear pressure waves.
    Olson ES
    Nature; 1999 Dec; 402(6761):526-9. PubMed ID: 10591211
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On active and passive cochlear models--toward a generalized analysis.
    de Boer E
    J Acoust Soc Am; 1983 Feb; 73(2):574-6. PubMed ID: 6841796
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How does the inner ear generate distortion product otoacoustic emissions?. Results from a realistic model of the human cochlea.
    Vetesnik A; Nobili R; Gummer A
    ORL J Otorhinolaryngol Relat Spec; 2006; 68(6):347-52. PubMed ID: 17065828
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [A mechanical simulation model of the basilar membrane of the cochlea].
    Miao J; Xiao Z; Zhou L
    Nan Fang Yi Ke Da Xue Xue Bao; 2014 Jan; 34(1):79-83. PubMed ID: 24463122
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Basilar membrane mechanics in the 6-9 kHz region of sensitive chinchilla cochleae.
    Rhode WS
    J Acoust Soc Am; 2007 May; 121(5 Pt1):2792-804. PubMed ID: 17550178
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coherent reflection in a two-dimensional cochlea: Short-wave versus long-wave scattering in the generation of reflection-source otoacoustic emissions.
    Shera CA; Tubis A; Talmadge CL
    J Acoust Soc Am; 2005 Jul; 118(1):287-313. PubMed ID: 16119350
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Solving cochlear mechanics problems with higher-order differential equations.
    de Boer E; van Bienema E
    J Acoust Soc Am; 1982 Nov; 72(5):1427-34. PubMed ID: 7175030
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On Riccati equations describing impedance relations for forward and backward excitation in the one-dimensional cochlea model.
    Kaernbach C; König P; Schillen T
    J Acoust Soc Am; 1987 Feb; 81(2):408-11. PubMed ID: 3558956
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3D-finite element model of the human cochlea including fluid-structure couplings.
    Böhnke F; Arnold W
    ORL J Otorhinolaryngol Relat Spec; 1999; 61(5):305-10. PubMed ID: 10529652
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Short and long waves in the cochlea.
    de Boer E
    Hear Res; 1980 Jun; 2(3-4):465-73. PubMed ID: 7410251
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.