These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 17550204)
1. An exact point source starting field for the Fourier parabolic equation in outdoor sound propagation. Gilbert KE; Di X J Acoust Soc Am; 2007 May; 121(5 Pt1):EL203-10. PubMed ID: 17550204 [TBL] [Abstract][Full Text] [Related]
2. A first-order k-space model for elastic wave propagation in heterogeneous media. Firouzi K; Cox BT; Treeby BE; Saffari N J Acoust Soc Am; 2012 Sep; 132(3):1271-83. PubMed ID: 22978855 [TBL] [Abstract][Full Text] [Related]
4. A complex virtual source approach for calculating the diffraction beam field generated by a rectangular planar source. Sha K; Yang J; Gan WS IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Jul; 50(7):890-7. PubMed ID: 12894922 [TBL] [Abstract][Full Text] [Related]
5. A three dimensional parabolic equation method for sound propagation in moving inhomogeneous media. Cheng R; Morris PJ; Brentner KS J Acoust Soc Am; 2009 Oct; 126(4):1700-10. PubMed ID: 19813786 [TBL] [Abstract][Full Text] [Related]
6. A higher-order tangent linear parabolic-equation solution of three-dimensional sound propagation. Lin YT J Acoust Soc Am; 2013 Aug; 134(2):EL251-7. PubMed ID: 23927233 [TBL] [Abstract][Full Text] [Related]
7. Statistical moments of the sound field propagating in a random, refractive medium near an impedance boundary. Wilson DK; Ostashev VE J Acoust Soc Am; 2001 May; 109(5 Pt 1):1909-22. PubMed ID: 11386545 [TBL] [Abstract][Full Text] [Related]
8. Global boundary flattening transforms for acoustic propagation under rough sea surfaces. Oba RM J Acoust Soc Am; 2010 Jul; 128(1):39-49. PubMed ID: 20649199 [TBL] [Abstract][Full Text] [Related]
9. Application of the Beilis-Tappert parabolic equation method to sound propagation over irregular terrain. Parakkal S; Gilbert KE; Di X J Acoust Soc Am; 2012 Feb; 131(2):1039-46. PubMed ID: 22352479 [TBL] [Abstract][Full Text] [Related]
10. A note on noise propagation in street canyons. Li KM; Lai CY J Acoust Soc Am; 2009 Aug; 126(2):644-55. PubMed ID: 19640030 [TBL] [Abstract][Full Text] [Related]
11. An analytic, Fourier domain description of shear wave propagation in a viscoelastic medium using asymmetric Gaussian sources. Rouze NC; Palmeri ML; Nightingale KR J Acoust Soc Am; 2015 Aug; 138(2):1012-22. PubMed ID: 26328717 [TBL] [Abstract][Full Text] [Related]
12. Incorporating source directionality into outdoor sound propagation calculations. Vecherin SN; Keith Wilson D; Ostashev VE J Acoust Soc Am; 2011 Dec; 130(6):3608-22. PubMed ID: 22225018 [TBL] [Abstract][Full Text] [Related]
14. A three-dimensional parabolic equation model of sound propagation using higher-order operator splitting and Padé approximants. Lin YT; Collis JM; Duda TF J Acoust Soc Am; 2012 Nov; 132(5):EL364-70. PubMed ID: 23145696 [TBL] [Abstract][Full Text] [Related]
15. Acoustic shock wave propagation in a heterogeneous medium: a numerical simulation beyond the parabolic approximation. Dagrau F; Rénier M; Marchiano R; Coulouvrat F J Acoust Soc Am; 2011 Jul; 130(1):20-32. PubMed ID: 21786874 [TBL] [Abstract][Full Text] [Related]
16. Atmospheric sound propagation in a stratified moving media: Application of the semi analytic finite element method. Kirby R J Acoust Soc Am; 2020 Dec; 148(6):3737. PubMed ID: 33379921 [TBL] [Abstract][Full Text] [Related]
17. A k-space Green's function solution for acoustic initial value problems in homogeneous media with power law absorption. Treeby BE; Cox BT J Acoust Soc Am; 2011 Jun; 129(6):3652-60. PubMed ID: 21682390 [TBL] [Abstract][Full Text] [Related]
18. Phase stability of convergence zone propagation at mid-frequency. Akins FH; Hodgkiss WS; Kuperman WA J Acoust Soc Am; 2024 Oct; 156(4):2409-2421. PubMed ID: 39392354 [TBL] [Abstract][Full Text] [Related]
19. Sound propagation in a turbulent atmosphere near the ground: an approach based on the spectral representation of refractive-index fluctuations. Salomons EM; Ostashev VE; Clifford SF; Lataitis RJ J Acoust Soc Am; 2001 May; 109(5 Pt 1):1881-93. PubMed ID: 11386543 [TBL] [Abstract][Full Text] [Related]
20. Elastic parabolic equation solutions for underwater acoustic problems using seismic sources. Frank SD; Odom RI; Collis JM J Acoust Soc Am; 2013 Mar; 133(3):1358-67. PubMed ID: 23464007 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]