These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 17550205)

  • 21. Model-Based Nonlinear Feedback Controllers for Pressure Control of Soft Pneumatic Actuators Using On/Off Valves.
    Xavier MS; Fleming AJ; Yong YK
    Front Robot AI; 2022; 9():818187. PubMed ID: 35368434
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Real-Time Performance of Mechatronic PZT Module Using Active Vibration Feedback Control.
    Aggogeri F; Borboni A; Merlo A; Pellegrini N; Ricatto R
    Sensors (Basel); 2016 Sep; 16(10):. PubMed ID: 27681732
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design and control of six degree-of-freedom active vibration isolation table.
    Hong J; Park K
    Rev Sci Instrum; 2010 Mar; 81(3):035106. PubMed ID: 20370212
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prototyping a compact system for active vibration isolation using piezoelectric sensors and actuators.
    Shen H; Wang C; Li L; Chen L
    Rev Sci Instrum; 2013 May; 84(5):055002. PubMed ID: 23742582
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Atomic force microscopy capable of vibration isolation with low-stiffness Z-axis actuation.
    Ito S; Schitter G
    Ultramicroscopy; 2018 Mar; 186():9-17. PubMed ID: 29245032
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improved training of neural networks for the nonlinear active control of sound and vibration.
    Bouchard M; Paillard B; Le Dinh CT
    IEEE Trans Neural Netw; 1999; 10(2):391-401. PubMed ID: 18252535
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coupling analysis of a matched piezoelectric sensor and actuator pair for vibration control of a smart beam.
    Lee YS; Gardonio P; Elliott SJ
    J Acoust Soc Am; 2002 Jun; 111(6):2715-26. PubMed ID: 12083206
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of attractive versus repulsive vibrotactile instructional cues during motion replication tasks.
    Lee BC; Sienko KH
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():3533-6. PubMed ID: 22255102
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Experimental Verification of Three-Degree-of-Freedom Electromagnetic Actuator for Image Stabilization.
    Heya A; Hirata K
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32349418
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design and Experimentation of a Self-Sensing Actuator for Active Vibration Isolation System with Adjustable Anti-Resonance Frequency Controller.
    Fu Y; Li S; Liu J; Zhao B
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33801978
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A comparison of decentralized, distributed, and centralized vibro-acoustic control.
    Frampton KD; Baumann ON; Gardonio P
    J Acoust Soc Am; 2010 Nov; 128(5):2798-806. PubMed ID: 21110575
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dual-user nonlinear teleoperation subjected to varying time delay and bounded inputs.
    Zakerimanesh A; Hashemzadeh F; Ghiasi AR
    ISA Trans; 2017 May; 68():33-47. PubMed ID: 28267986
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Global optimization of distributed output feedback controllers.
    Baumann ON; Elliott SJ
    J Acoust Soc Am; 2007 Sep; 122(3):1587. PubMed ID: 17927417
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Damping actions of the neuromuscular system with inertial loads: soleus muscle of the decerebrate cat.
    Lin DC; Rymer WZ
    J Neurophysiol; 2000 Feb; 83(2):652-8. PubMed ID: 10669481
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An improved force feedback control algorithm for active tendons.
    Guo T; Liu Z; Cai L
    Sensors (Basel); 2012; 12(8):11360-71. PubMed ID: 23112660
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Alternation of regular and chaotic dynamics in a simple two-degree-of-freedom system with nonlinear inertial coupling.
    Sigalov G; Gendelman OV; AL-Shudeifat MA; Manevitch LI; Vakakis AF; Bergman LA
    Chaos; 2012 Mar; 22(1):013118. PubMed ID: 22462994
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A programmable broadband low frequency active vibration isolation system for atom interferometry.
    Tang B; Zhou L; Xiong Z; Wang J; Zhan M
    Rev Sci Instrum; 2014 Sep; 85(9):093109. PubMed ID: 25273709
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Self-Reinforced Nylon 6 Composite for Smart Vibration Damping.
    Salahuddin B; Mutlu R; Baigh TA; Alghamdi MN; Aziz S
    Polymers (Basel); 2021 Apr; 13(8):. PubMed ID: 33920385
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Magnetic force driven six degree-of-freedom active vibration isolation system using a phase compensated velocity sensor.
    Kim Y; Kim S; Park K
    Rev Sci Instrum; 2009 Apr; 80(4):045108. PubMed ID: 19405692
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new continuous sliding mode control approach with actuator saturation for control of 2-DOF helicopter system.
    Sadala SP; Patre BM
    ISA Trans; 2018 Mar; 74():165-174. PubMed ID: 29395131
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.