These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
324 related articles for article (PubMed ID: 17550285)
21. Calculation of the hydration free energy difference between pyridine and its methyl-substituted derivatives by computer simulation methods. Partay L; Jedlovszky P; Jancsó G J Phys Chem B; 2005 Apr; 109(16):8097-102. PubMed ID: 16851946 [TBL] [Abstract][Full Text] [Related]
22. Electronic structure, binding energy, and solvation structure of the streptavidin-biotin supramolecular complex: ONIOM and 3D-RISM study. Li Q; Gusarov S; Evoy S; Kovalenko A J Phys Chem B; 2009 Jul; 113(29):9958-67. PubMed ID: 19545155 [TBL] [Abstract][Full Text] [Related]
23. A quantum chemical approach to the free energy calculations in condensed systems: the QM/MM method combined with the theory of energy representation. Takahashi H; Matubayasi N; Nakahara M; Nitta T J Chem Phys; 2004 Sep; 121(9):3989-99. PubMed ID: 15332945 [TBL] [Abstract][Full Text] [Related]
24. Computation of binding free energy with molecular dynamics and grand canonical Monte Carlo simulations. Deng Y; Roux B J Chem Phys; 2008 Mar; 128(11):115103. PubMed ID: 18361618 [TBL] [Abstract][Full Text] [Related]
25. An aggregation-volume-bias Monte Carlo investigation on the condensation of a Lennard-Jones vapor below the triple point and crystal nucleation in cluster systems: an in-depth evaluation of the classical nucleation theory. Chen B; Kim H; Keasler SJ; Nellas RB J Phys Chem B; 2008 Apr; 112(13):4067-78. PubMed ID: 18335920 [TBL] [Abstract][Full Text] [Related]
26. Computer simulations of aqua metal ions for accurate reproduction of hydration free energies and structures. Li X; Tu Y; Tian H; Agren H J Chem Phys; 2010 Mar; 132(10):104505. PubMed ID: 20232969 [TBL] [Abstract][Full Text] [Related]
27. Computation of brain-blood partitioning of organic solutes via free energy calculations. Lombardo F; Blake JF; Curatolo WJ J Med Chem; 1996 Nov; 39(24):4750-5. PubMed ID: 8941388 [TBL] [Abstract][Full Text] [Related]
28. Computation of methodology-independent ionic solvation free energies from molecular simulations. II. The hydration free energy of the sodium cation. Kastenholz MA; Hünenberger PH J Chem Phys; 2006 Jun; 124(22):224501. PubMed ID: 16784292 [TBL] [Abstract][Full Text] [Related]
29. A partition coefficient calculation method with the SFED model. In Y; Chai HH; No KT J Chem Inf Model; 2005; 45(2):254-63. PubMed ID: 15807486 [TBL] [Abstract][Full Text] [Related]
30. Efficient free energy calculations on small molecule host-guest systems - a combined linear interaction energy/one-step perturbation approach. Oostenbrink C J Comput Chem; 2009 Jan; 30(2):212-21. PubMed ID: 18785242 [TBL] [Abstract][Full Text] [Related]
31. Free energy simulations: the meaning of the individual contributions from a component analysis. Boresch S; Archontis G; Karplus M Proteins; 1994 Sep; 20(1):25-33. PubMed ID: 7824520 [TBL] [Abstract][Full Text] [Related]
32. Use of enthalpy and Gibbs free energy to evaluate the risk of amorphous formation. Hsieh DS; Sarsfield BA; Davidovich M; DiMemmo LM; Chang SY; Kiang S J Pharm Sci; 2010 Sep; 99(9):4096-105. PubMed ID: 20564337 [TBL] [Abstract][Full Text] [Related]
33. Design of surface active soluble peptide molecules at the air/water interface. Gu C; Lustig S; Jackson C; Trout BL J Phys Chem B; 2008 Mar; 112(10):2970-80. PubMed ID: 18271570 [TBL] [Abstract][Full Text] [Related]
34. Calculation of the Gibbs free energy of solvation and dissociation of HCl in water via Monte Carlo simulations and continuum solvation models. McGrath MJ; Kuo IF; Ngouana W BF; Ghogomu JN; Mundy CJ; Marenich AV; Cramer CJ; Truhlar DG; Siepmann JI Phys Chem Chem Phys; 2013 Aug; 15(32):13578-85. PubMed ID: 23831584 [TBL] [Abstract][Full Text] [Related]
35. Position-resolved free energy of solvation for amino acids in lipid membranes from molecular dynamics simulations. Johansson AC; Lindahl E Proteins; 2008 Mar; 70(4):1332-44. PubMed ID: 17876818 [TBL] [Abstract][Full Text] [Related]
36. Computation of the free energy change associated with one-electron reduction of coenzyme immersed in water: a novel approach within the framework of the quantum mechanical/molecular mechanical method combined with the theory of energy representation. Takahashi H; Ohno H; Kishi R; Nakano M; Matubayasi N J Chem Phys; 2008 Nov; 129(20):205103. PubMed ID: 19045881 [TBL] [Abstract][Full Text] [Related]
37. Mechanism of the hydration of carbon dioxide: direct participation of H2O versus microsolvation. Nguyen MT; Matus MH; Jackson VE; Vu TN; Rustad JR; Dixon DA J Phys Chem A; 2008 Oct; 112(41):10386-98. PubMed ID: 18816037 [TBL] [Abstract][Full Text] [Related]
38. Importance of polarization in quantum mechanics/molecular mechanics descriptions of electronic excited states: NaI(H2O)n photodissociation dynamics as a case study. Koch DM; Peslherbe GH J Phys Chem B; 2008 Jan; 112(2):636-49. PubMed ID: 18183959 [TBL] [Abstract][Full Text] [Related]
39. Solubility of KF and NaCl in water by molecular simulation. Sanz E; Vega C J Chem Phys; 2007 Jan; 126(1):014507. PubMed ID: 17212500 [TBL] [Abstract][Full Text] [Related]
40. Free energy calculation using molecular dynamics simulation combined with the three dimensional reference interaction site model theory. I. Free energy perturbation and thermodynamic integration along a coupling parameter. Miyata T; Ikuta Y; Hirata F J Chem Phys; 2010 Jul; 133(4):044114. PubMed ID: 20687640 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]