These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 17551672)
1. Comparison between a coffee single copy chromosomal region and Arabidopsis duplicated counterparts evidenced high level synteny between the coffee genome and the ancestral Arabidopsis genome. Mahé L; Combes MC; Lashermes P Plant Mol Biol; 2007 Aug; 64(6):699-711. PubMed ID: 17551672 [TBL] [Abstract][Full Text] [Related]
2. Synteny conservation between the Prunus genome and both the present and ancestral Arabidopsis genomes. Jung S; Main D; Staton M; Cho I; Zhebentyayeva T; Arús P; Abbott A BMC Genomics; 2006 Apr; 7():81. PubMed ID: 16615871 [TBL] [Abstract][Full Text] [Related]
3. Ancestral synteny shared between distantly-related plant species from the asterid (Coffea canephora and Solanum Sp.) and rosid (Vitis vinifera) clades. Guyot R; Lefebvre-Pautigny F; Tranchant-Dubreuil C; Rigoreau M; Hamon P; Leroy T; Hamon S; Poncet V; Crouzillat D; de Kochko A BMC Genomics; 2012 Mar; 13():103. PubMed ID: 22433423 [TBL] [Abstract][Full Text] [Related]
4. Comparative sequence analysis of Solanum and Arabidopsis in a hot spot for pathogen resistance on potato chromosome V reveals a patchwork of conserved and rapidly evolving genome segments. Ballvora A; Jöcker A; Viehöver P; Ishihara H; Paal J; Meksem K; Bruggmann R; Schoof H; Weisshaar B; Gebhardt C BMC Genomics; 2007 May; 8():112. PubMed ID: 17474978 [TBL] [Abstract][Full Text] [Related]
5. Estimates of conserved microsynteny among the genomes of Glycine max, Medicago truncatula and Arabidopsis thaliana. Yan HH; Mudge J; Kim DJ; Larsen D; Shoemaker RC; Cook DR; Young ND Theor Appl Genet; 2003 May; 106(7):1256-65. PubMed ID: 12748777 [TBL] [Abstract][Full Text] [Related]
6. Comparative physical mapping reveals features of microsynteny between Glycine max, Medicago truncatula, and Arabidopsis thaliana. Yan HH; Mudge J; Kim DJ; Shoemaker RC; Cook DR; Young ND Genome; 2004 Feb; 47(1):141-55. PubMed ID: 15060611 [TBL] [Abstract][Full Text] [Related]
7. Genome-wide comparative analysis of the Brassica rapa gene space reveals genome shrinkage and differential loss of duplicated genes after whole genome triplication. Mun JH; Kwon SJ; Yang TJ; Seol YJ; Jin M; Kim JA; Lim MH; Kim JS; Baek S; Choi BS; Yu HJ; Kim DS; Kim N; Lim KB; Lee SI; Hahn JH; Lim YP; Bancroft I; Park BS Genome Biol; 2009; 10(10):R111. PubMed ID: 19821981 [TBL] [Abstract][Full Text] [Related]
8. Comparative sequence analyses indicate that Coffea (Asterids) and Vitis (Rosids) derive from the same paleo-hexaploid ancestral genome. Cenci A; Combes MC; Lashermes P Mol Genet Genomics; 2010 May; 283(5):493-501. PubMed ID: 20361338 [TBL] [Abstract][Full Text] [Related]
9. Physical mapping and microsynteny of Brassica rapa ssp. pekinensis genome corresponding to a 222 kbp gene-rich region of Arabidopsis chromosome 4 and partially duplicated on chromosome 5. Park JY; Koo DH; Hong CP; Lee SJ; Jeon JW; Lee SH; Yun PY; Park BS; Kim HR; Bang JW; Plaha P; Bancroft I; Lim YP Mol Genet Genomics; 2005 Dec; 274(6):579-88. PubMed ID: 16283385 [TBL] [Abstract][Full Text] [Related]
10. Structure of two melon regions reveals high microsynteny with sequenced plant species. Deleu W; González V; Monfort A; Bendahmane A; Puigdomènech P; Arús P; Garcia-Mas J Mol Genet Genomics; 2007 Dec; 278(6):611-22. PubMed ID: 17665215 [TBL] [Abstract][Full Text] [Related]
11. Highly syntenic regions in the genomes of soybean, Medicago truncatula, and Arabidopsis thaliana. Mudge J; Cannon SB; Kalo P; Oldroyd GE; Roe BA; Town CD; Young ND BMC Plant Biol; 2005 Aug; 5():15. PubMed ID: 16102170 [TBL] [Abstract][Full Text] [Related]
12. Micro-collinearity and genome evolution in the vicinity of an ethylene receptor gene of cultivated diploid and allotetraploid coffee species (Coffea). Yu Q; Guyot R; de Kochko A; Byers A; Navajas-Pérez R; Langston BJ; Dubreuil-Tranchant C; Paterson AH; Poncet V; Nagai C; Ming R Plant J; 2011 Jul; 67(2):305-17. PubMed ID: 21457367 [TBL] [Abstract][Full Text] [Related]
13. BAC-end sequences analysis provides first insights into coffee (Coffea canephora P.) genome composition and evolution. Dereeper A; Guyot R; Tranchant-Dubreuil C; Anthony F; Argout X; de Bellis F; Combes MC; Gavory F; de Kochko A; Kudrna D; Leroy T; Poulain J; Rondeau M; Song X; Wing R; Lashermes P Plant Mol Biol; 2013 Oct; 83(3):177-89. PubMed ID: 23708951 [TBL] [Abstract][Full Text] [Related]
14. Comparative genomic analysis of sequences sampled from a small region on soybean (Glycine max) molecular linkage group G. Foster-Hartnett D; Mudge J; Larsen D; Danesh D; Yan H; Denny R; Peñuela S; Young ND Genome; 2002 Aug; 45(4):634-45. PubMed ID: 12175066 [TBL] [Abstract][Full Text] [Related]
15. Syntenic relationships between Medicago truncatula and Arabidopsis reveal extensive divergence of genome organization. Zhu H; Kim DJ; Baek JM; Choi HK; Ellis LC; Küester H; McCombie WR; Peng HM; Cook DR Plant Physiol; 2003 Mar; 131(3):1018-26. PubMed ID: 12644654 [TBL] [Abstract][Full Text] [Related]
16. Significant microsynteny with new evolutionary highlights is detected between Arabidopsis and legume model plants despite the lack of macrosynteny. Kevei Z; Seres A; Kereszt A; Kaló P; Kiss P; Tóth G; Endre G; Kiss GB Mol Genet Genomics; 2005 Dec; 274(6):644-57. PubMed ID: 16273388 [TBL] [Abstract][Full Text] [Related]
17. Sequence and structure of Brassica rapa chromosome A3. Mun JH; Kwon SJ; Seol YJ; Kim JA; Jin M; Kim JS; Lim MH; Lee SI; Hong JK; Park TH; Lee SC; Kim BJ; Seo MS; Baek S; Lee MJ; Shin JY; Hahn JH; Hwang YJ; Lim KB; Park JY; Lee J; Yang TJ; Yu HJ; Choi IY; Choi BS; Choi SR; Ramchiary N; Lim YP; Fraser F; Drou N; Soumpourou E; Trick M; Bancroft I; Sharpe AG; Parkin IA; Batley J; Edwards D; Park BS Genome Biol; 2010; 11(9):R94. PubMed ID: 20875114 [TBL] [Abstract][Full Text] [Related]
18. A physical map of Brassica oleracea shows complexity of chromosomal changes following recursive paleopolyploidizations. Wang X; Torres MJ; Pierce G; Lemke C; Nelson LK; Yuksel B; Bowers JE; Marler B; Xiao Y; Lin L; Epps E; Sarazen H; Rogers C; Karunakaran S; Ingles J; Giattina E; Mun JH; Seol YJ; Park BS; Amasino RM; Quiros CF; Osborn TC; Pires JC; Town C; Paterson AH BMC Genomics; 2011 Sep; 12():470. PubMed ID: 21955929 [TBL] [Abstract][Full Text] [Related]
19. High resolution genetic and physical mapping of the I-3 region of tomato chromosome 7 reveals almost continuous microsynteny with grape chromosome 12 but interspersed microsynteny with duplications on Arabidopsis chromosomes 1, 2 and 3. Lim GT; Wang GP; Hemming MN; McGrath DJ; Jones DA Theor Appl Genet; 2008 Dec; 118(1):57-75. PubMed ID: 18813906 [TBL] [Abstract][Full Text] [Related]
20. A segment of the apospory-specific genomic region is highly microsyntenic not only between the apomicts Pennisetum squamulatum and buffelgrass, but also with a rice chromosome 11 centromeric-proximal genomic region. Gualtieri G; Conner JA; Morishige DT; Moore LD; Mullet JE; Ozias-Akins P Plant Physiol; 2006 Mar; 140(3):963-71. PubMed ID: 16415213 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]