BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 17551672)

  • 1. Comparison between a coffee single copy chromosomal region and Arabidopsis duplicated counterparts evidenced high level synteny between the coffee genome and the ancestral Arabidopsis genome.
    Mahé L; Combes MC; Lashermes P
    Plant Mol Biol; 2007 Aug; 64(6):699-711. PubMed ID: 17551672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synteny conservation between the Prunus genome and both the present and ancestral Arabidopsis genomes.
    Jung S; Main D; Staton M; Cho I; Zhebentyayeva T; Arús P; Abbott A
    BMC Genomics; 2006 Apr; 7():81. PubMed ID: 16615871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ancestral synteny shared between distantly-related plant species from the asterid (Coffea canephora and Solanum Sp.) and rosid (Vitis vinifera) clades.
    Guyot R; Lefebvre-Pautigny F; Tranchant-Dubreuil C; Rigoreau M; Hamon P; Leroy T; Hamon S; Poncet V; Crouzillat D; de Kochko A
    BMC Genomics; 2012 Mar; 13():103. PubMed ID: 22433423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative sequence analysis of Solanum and Arabidopsis in a hot spot for pathogen resistance on potato chromosome V reveals a patchwork of conserved and rapidly evolving genome segments.
    Ballvora A; Jöcker A; Viehöver P; Ishihara H; Paal J; Meksem K; Bruggmann R; Schoof H; Weisshaar B; Gebhardt C
    BMC Genomics; 2007 May; 8():112. PubMed ID: 17474978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimates of conserved microsynteny among the genomes of Glycine max, Medicago truncatula and Arabidopsis thaliana.
    Yan HH; Mudge J; Kim DJ; Larsen D; Shoemaker RC; Cook DR; Young ND
    Theor Appl Genet; 2003 May; 106(7):1256-65. PubMed ID: 12748777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative physical mapping reveals features of microsynteny between Glycine max, Medicago truncatula, and Arabidopsis thaliana.
    Yan HH; Mudge J; Kim DJ; Shoemaker RC; Cook DR; Young ND
    Genome; 2004 Feb; 47(1):141-55. PubMed ID: 15060611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide comparative analysis of the Brassica rapa gene space reveals genome shrinkage and differential loss of duplicated genes after whole genome triplication.
    Mun JH; Kwon SJ; Yang TJ; Seol YJ; Jin M; Kim JA; Lim MH; Kim JS; Baek S; Choi BS; Yu HJ; Kim DS; Kim N; Lim KB; Lee SI; Hahn JH; Lim YP; Bancroft I; Park BS
    Genome Biol; 2009; 10(10):R111. PubMed ID: 19821981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of hybridization-based markers (overgos) into physical maps for comparative and evolutionary explorations in the genus Oryza and in Sorghum.
    Hass-Jacobus BL; Futrell-Griggs M; Abernathy B; Westerman R; Goicoechea JL; Stein J; Klein P; Hurwitz B; Zhou B; Rakhshan F; Sanyal A; Gill N; Lin JY; Walling JG; Luo MZ; Ammiraju JS; Kudrna D; Kim HR; Ware D; Wing RA; San Miguel P; Jackson SA
    BMC Genomics; 2006 Aug; 7():199. PubMed ID: 16895597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative sequence analyses indicate that Coffea (Asterids) and Vitis (Rosids) derive from the same paleo-hexaploid ancestral genome.
    Cenci A; Combes MC; Lashermes P
    Mol Genet Genomics; 2010 May; 283(5):493-501. PubMed ID: 20361338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical mapping and microsynteny of Brassica rapa ssp. pekinensis genome corresponding to a 222 kbp gene-rich region of Arabidopsis chromosome 4 and partially duplicated on chromosome 5.
    Park JY; Koo DH; Hong CP; Lee SJ; Jeon JW; Lee SH; Yun PY; Park BS; Kim HR; Bang JW; Plaha P; Bancroft I; Lim YP
    Mol Genet Genomics; 2005 Dec; 274(6):579-88. PubMed ID: 16283385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A segment of the apospory-specific genomic region is highly microsyntenic not only between the apomicts Pennisetum squamulatum and buffelgrass, but also with a rice chromosome 11 centromeric-proximal genomic region.
    Gualtieri G; Conner JA; Morishige DT; Moore LD; Mullet JE; Ozias-Akins P
    Plant Physiol; 2006 Mar; 140(3):963-71. PubMed ID: 16415213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of two melon regions reveals high microsynteny with sequenced plant species.
    Deleu W; González V; Monfort A; Bendahmane A; Puigdomènech P; Arús P; Garcia-Mas J
    Mol Genet Genomics; 2007 Dec; 278(6):611-22. PubMed ID: 17665215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly syntenic regions in the genomes of soybean, Medicago truncatula, and Arabidopsis thaliana.
    Mudge J; Cannon SB; Kalo P; Oldroyd GE; Roe BA; Town CD; Young ND
    BMC Plant Biol; 2005 Aug; 5():15. PubMed ID: 16102170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micro-collinearity and genome evolution in the vicinity of an ethylene receptor gene of cultivated diploid and allotetraploid coffee species (Coffea).
    Yu Q; Guyot R; de Kochko A; Byers A; Navajas-Pérez R; Langston BJ; Dubreuil-Tranchant C; Paterson AH; Poncet V; Nagai C; Ming R
    Plant J; 2011 Jul; 67(2):305-17. PubMed ID: 21457367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BAC-end sequences analysis provides first insights into coffee (Coffea canephora P.) genome composition and evolution.
    Dereeper A; Guyot R; Tranchant-Dubreuil C; Anthony F; Argout X; de Bellis F; Combes MC; Gavory F; de Kochko A; Kudrna D; Leroy T; Poulain J; Rondeau M; Song X; Wing R; Lashermes P
    Plant Mol Biol; 2013 Oct; 83(3):177-89. PubMed ID: 23708951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative genomic analysis of sequences sampled from a small region on soybean (Glycine max) molecular linkage group G.
    Foster-Hartnett D; Mudge J; Larsen D; Danesh D; Yan H; Denny R; Peñuela S; Young ND
    Genome; 2002 Aug; 45(4):634-45. PubMed ID: 12175066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Syntenic relationships between Medicago truncatula and Arabidopsis reveal extensive divergence of genome organization.
    Zhu H; Kim DJ; Baek JM; Choi HK; Ellis LC; Küester H; McCombie WR; Peng HM; Cook DR
    Plant Physiol; 2003 Mar; 131(3):1018-26. PubMed ID: 12644654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Significant microsynteny with new evolutionary highlights is detected between Arabidopsis and legume model plants despite the lack of macrosynteny.
    Kevei Z; Seres A; Kereszt A; Kaló P; Kiss P; Tóth G; Endre G; Kiss GB
    Mol Genet Genomics; 2005 Dec; 274(6):644-57. PubMed ID: 16273388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence and structure of Brassica rapa chromosome A3.
    Mun JH; Kwon SJ; Seol YJ; Kim JA; Jin M; Kim JS; Lim MH; Lee SI; Hong JK; Park TH; Lee SC; Kim BJ; Seo MS; Baek S; Lee MJ; Shin JY; Hahn JH; Hwang YJ; Lim KB; Park JY; Lee J; Yang TJ; Yu HJ; Choi IY; Choi BS; Choi SR; Ramchiary N; Lim YP; Fraser F; Drou N; Soumpourou E; Trick M; Bancroft I; Sharpe AG; Parkin IA; Batley J; Edwards D; Park BS
    Genome Biol; 2010; 11(9):R94. PubMed ID: 20875114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A physical map of Brassica oleracea shows complexity of chromosomal changes following recursive paleopolyploidizations.
    Wang X; Torres MJ; Pierce G; Lemke C; Nelson LK; Yuksel B; Bowers JE; Marler B; Xiao Y; Lin L; Epps E; Sarazen H; Rogers C; Karunakaran S; Ingles J; Giattina E; Mun JH; Seol YJ; Park BS; Amasino RM; Quiros CF; Osborn TC; Pires JC; Town C; Paterson AH
    BMC Genomics; 2011 Sep; 12():470. PubMed ID: 21955929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.