BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 17551842)

  • 1. Low rates of homogenization of the DBC-150 satellite DNA family restricted to a single pair of microchromosomes in species from the Drosophila buzzatii cluster.
    Kuhn GC; Franco FF; Manfrin MH; Moreira-Filho O; Sene FM
    Chromosome Res; 2007; 15(4):457-69. PubMed ID: 17551842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary turnover of two pBuM satellite DNA subfamilies in the Drosophila buzzatii species cluster (repleta group): from alpha to alpha/beta arrays.
    Kuhn GC; Sene FM
    Gene; 2005 Apr; 349():77-85. PubMed ID: 15777676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary dynamics and sites of illegitimate recombination revealed in the interspersion and sequence junctions of two nonhomologous satellite DNAs in cactophilic Drosophila species.
    Kuhn GC; Teo CH; Schwarzacher T; Heslop-Harrison JS
    Heredity (Edinb); 2009 May; 102(5):453-64. PubMed ID: 19259119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissecting the Satellite DNA Landscape in Three Cactophilic
    de Lima LG; Svartman M; Kuhn GCS
    G3 (Bethesda); 2017 Aug; 7(8):2831-2843. PubMed ID: 28659292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The non-regular orbit: three satellite DNAs in Drosophila martensis (buzzatii complex, repleta group) followed three different evolutionary pathways.
    Kuhn GC; Schwarzacher T; Heslop-Harrison JS
    Mol Genet Genomics; 2010 Oct; 284(4):251-62. PubMed ID: 20683615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence analysis, chromosomal distribution and long-range organization show that rapid turnover of new and old pBuM satellite DNA repeats leads to different patterns of variation in seven species of the Drosophila buzzatii cluster.
    Kuhn GC; Sene FM; Moreira-Filho O; Schwarzacher T; Heslop-Harrison JS
    Chromosome Res; 2008; 16(2):307-24. PubMed ID: 18266060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conservation of pBuM-2 satellite DNA sequences among geographically isolated Drosophila gouveai populations from Brazil.
    de Franco FF; Kuhn GC; de Sene FM; Manfrin MH
    Genetica; 2006; 128(1-3):287-95. PubMed ID: 17028958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the pBuM189 satellite DNA variability among South American populations of Drosophila buzzatii.
    Kuhn GC; Franco FF; Silva WA; Martinez-Rossi NM; Sene FM
    Hereditas; 2003; 139(3):161-6. PubMed ID: 15061796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low satellite DNA variability in natural populations of Drosophila antonietae involved in different evolutionary events.
    Franco FF; Sene FM; Manfrin MH
    J Hered; 2010; 101(5):650-6. PubMed ID: 20497968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new family of satellite DNA sequences as a major component of centromeric heterochromatin in owls (Strigiformes).
    Yamada K; Nishida-Umehara C; Matsuda Y
    Chromosoma; 2004 Mar; 112(6):277-87. PubMed ID: 14997323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural History of a Satellite DNA Family: From the Ancestral Genome Component to Species-Specific Sequences, Concerted and Non-Concerted Evolution.
    Belyayev A; Josefiová J; Jandová M; Kalendar R; Krak K; Mandák B
    Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30857296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gradual evolution of a specific satellite DNA family in Drosophila ambigua, D. tristis, and D. obscura.
    Bachmann L; Sperlich D
    Mol Biol Evol; 1993 May; 10(3):647-59. PubMed ID: 8336547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The pvB370 BamHI satellite DNA family of the Drosophila virilis group and its evolutionary relation to mobile dispersed genetic pDv elements.
    Heikkinen E; Launonen V; Müller E; Bachmann L
    J Mol Evol; 1995 Nov; 41(5):604-14. PubMed ID: 7490775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origins and Evolutionary Patterns of the
    de Lima LG; Hanlon SL; Gerton JL
    G3 (Bethesda); 2020 Nov; 10(11):4129-4146. PubMed ID: 32934018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization and chromosomal distribution of a novel satellite DNA sequence of Japanese quail (Coturnix coturnix japonica).
    Tanaka K; Suzuki T; Nojiri T; Yamagata T; Namikawa T; Matsuda Y
    J Hered; 2000; 91(5):412-5. PubMed ID: 10994713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disparate molecular evolution of two types of repetitive DNAs in the genome of the grasshopper Eyprepocnemis plorans.
    Teruel M; Ruíz-Ruano FJ; Marchal JA; Sánchez A; Cabrero J; Camacho JP; Perfectti F
    Heredity (Edinb); 2014 May; 112(5):531-42. PubMed ID: 24346496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concerted evolution of primate alpha satellite DNA. Evidence for an ancestral sequence shared by gorilla and human X chromosome alpha satellite.
    Durfy SJ; Willard HF
    J Mol Biol; 1990 Dec; 216(3):555-66. PubMed ID: 2258932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterisation and interpopulation variability of a complex HpaI satellite DNA of Drosophila seriema (repleta group).
    Kuhn GC; Sene FM
    Genetica; 2004 Jul; 121(3):241-9. PubMed ID: 15521422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduced rates of sequence evolution of Y-linked satellite DNA in Rumex (Polygonaceae).
    Navajas-Pérez R; la Herrán Rd; Jamilena M; Lozano R; Rejón CR; Rejón MR; Garrido-Ramos MA
    J Mol Evol; 2005 Mar; 60(3):391-9. PubMed ID: 15871049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intra-specific variability and unusual organization of the repetitive units in a satellite DNA from Rana dalmatina: molecular evidence of a new mechanism of DNA repair acting on satellite DNA.
    Feliciello I; Picariello O; Chinali G
    Gene; 2006 Nov; 383():81-92. PubMed ID: 16956734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.