BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 17551979)

  • 1. Temporal and spatial profiles of cell loss after spinal cord injury: Reduction by a metalloporphyrin.
    Ling X; Liu D
    J Neurosci Res; 2007 Aug; 85(10):2175-85. PubMed ID: 17551979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydroxyl radicals generated in the rat spinal cord at the level produced by impact injury induce cell death by necrosis and apoptosis: protection by a metalloporphyrin.
    Bao F; Liu D
    Neuroscience; 2004; 126(2):285-95. PubMed ID: 15207346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peroxynitrite generated in the rat spinal cord induces oxidation and nitration of proteins: reduction by Mn (III) tetrakis (4-benzoic acid) porphyrin.
    Bao F; DeWitt DS; Prough DS; Liu D
    J Neurosci Res; 2003 Jan; 71(2):220-7. PubMed ID: 12503084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The temporal and spatial profiles of cell loss following experimental spinal cord injury: effect of antioxidant therapy on cell death and functional recovery.
    Ling X; Bao F; Qian H; Liu D
    BMC Neurosci; 2013 Nov; 14():146. PubMed ID: 24238557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen peroxide administered into the rat spinal cord at the level elevated by contusion spinal cord injury oxidizes proteins, DNA and membrane phospholipids, and induces cell death: attenuation by a metalloporphyrin.
    Liu D; Bao F
    Neuroscience; 2015 Jan; 285():81-96. PubMed ID: 25451281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mn (III) tetrakis (4-benzoic acid) porphyrin protects against neuronal and glial oxidative stress and death after spinal cord injury.
    Valluru L; Diao Y; Hachmeister JE; Liu D
    CNS Neurol Disord Drug Targets; 2012 Sep; 11(6):774-90. PubMed ID: 22483303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early induction of secondary injury factors causing activation of calpain and mitochondria-mediated neuronal apoptosis following spinal cord injury in rats.
    Wingrave JM; Schaecher KE; Sribnick EA; Wilford GG; Ray SK; Hazen-Martin DJ; Hogan EL; Banik NL
    J Neurosci Res; 2003 Jul; 73(1):95-104. PubMed ID: 12815713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal-spatial pattern of acute neuronal and glial loss after spinal cord contusion.
    Grossman SD; Rosenberg LJ; Wrathall JR
    Exp Neurol; 2001 Apr; 168(2):273-82. PubMed ID: 11259115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mn (III) tetrakis (4-benzoic acid) porphyrin administered into the intrathecal space reduces oxidative damage and neuron death after spinal cord injury: a comparison with methylprednisolone.
    Hachmeister JE; Valluru L; Bao F; Liu D
    J Neurotrauma; 2006 Dec; 23(12):1766-78. PubMed ID: 17184187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased growth factor expression and cell proliferation after contusive spinal cord injury.
    Zai LJ; Yoo S; Wrathall JR
    Brain Res; 2005 Aug; 1052(2):147-55. PubMed ID: 16005441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delayed glial cell death following wallerian degeneration in white matter tracts after spinal cord dorsal column cordotomy in adult rats.
    Warden P; Bamber NI; Li H; Esposito A; Ahmad KA; Hsu CY; Xu XM
    Exp Neurol; 2001 Apr; 168(2):213-24. PubMed ID: 11259109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The p75 neurotrophin receptor is essential for neuronal cell survival and improvement of functional recovery after spinal cord injury.
    Chu GK; Yu W; Fehlings MG
    Neuroscience; 2007 Sep; 148(3):668-82. PubMed ID: 17706365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Immunohistochemical study of apoptosis in the cells of experimental injured spinal cord].
    Baskov AV; Korshunov AG; Borshchenko IA; Satanova FS
    Arkh Patol; 2002; 64(2):23-7. PubMed ID: 12107898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of tumor necrosis factor-alpha in neuronal and glial apoptosis after spinal cord injury.
    Lee YB; Yune TY; Baik SY; Shin YH; Du S; Rhim H; Lee EB; Kim YC; Shin ML; Markelonis GJ; Oh TH
    Exp Neurol; 2000 Nov; 166(1):190-5. PubMed ID: 11031095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quantitative spatial analysis of the blood-spinal cord barrier. I. Permeability changes after experimental spinal contusion injury.
    Popovich PG; Horner PJ; Mullin BB; Stokes BT
    Exp Neurol; 1996 Dec; 142(2):258-75. PubMed ID: 8934558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preventive effect of erythropoietin on spinal cord cell apoptosis following acute traumatic injury in rats.
    Arishima Y; Setoguchi T; Yamaura I; Yone K; Komiya S
    Spine (Phila Pa 1976); 2006 Oct; 31(21):2432-8. PubMed ID: 17023852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The distribution of tissue damage in the spinal cord is influenced by the contusion velocity.
    Sparrey CJ; Choo AM; Liu J; Tetzlaff W; Oxland TR
    Spine (Phila Pa 1976); 2008 Oct; 33(22):E812-9. PubMed ID: 18923304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemokine antagonist infusion attenuates cellular infiltration following spinal cord contusion injury in rat.
    Ghirnikar RS; Lee YL; Eng LF
    J Neurosci Res; 2000 Jan; 59(1):63-73. PubMed ID: 10658186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relatively low levels of calpain expression in juvenile rat correlate with less neuronal apoptosis after spinal cord injury.
    Wingrave JM; Sribnick EA; Wilford GG; Matzelle DD; Mou JA; Ray SK; Hogan EL; Banik NL
    Exp Neurol; 2004 Jun; 187(2):529-32. PubMed ID: 15144879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Injury in the spinal cord may produce cell death in the brain.
    Lee BH; Lee KH; Kim UJ; Yoon DH; Sohn JH; Choi SS; Yi IG; Park YG
    Brain Res; 2004 Sep; 1020(1-2):37-44. PubMed ID: 15312785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.