These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 17552557)

  • 21. Reversible electrochemical switching of polyelectrolyte brush surface energy using electroactive counterions.
    Spruijt E; Choi EY; Huck WT
    Langmuir; 2008 Oct; 24(19):11253-60. PubMed ID: 18778088
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydrogels from a water-soluble zwitterionic polythiophene: dynamics under pH change and biomolecular interactions observed using quartz crystal microbalance with dissipation monitoring.
    Asberg P; Björk P; Höök F; Inganäs O
    Langmuir; 2005 Aug; 21(16):7292-8. PubMed ID: 16042456
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Polyelectrolyte brushes: a novel stable lubrication system in aqueous conditions.
    Kobayashi M; Terada M; Takahara A
    Faraday Discuss; 2012; 156():403-12; discussion 413-34. PubMed ID: 23285641
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High capacity, charge-selective protein uptake by polyelectrolyte brushes.
    Kusumo A; Bombalski L; Lin Q; Matyjaszewski K; Schneider JW; Tilton RD
    Langmuir; 2007 Apr; 23(8):4448-54. PubMed ID: 17358090
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interaction and structure in polyelectrolyte/clay multilayers: a QCM-D study.
    Findenig G; Kargl R; Stana-Kleinschek K; Ribitsch V
    Langmuir; 2013 Jul; 29(27):8544-53. PubMed ID: 23799242
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrochemical and spectroscopic investigation of counterions exchange in polyelectrolyte brushes.
    Combellas C; Kanoufi F; Sanjuan S; Slim C; Tran Y
    Langmuir; 2009 May; 25(9):5360-70. PubMed ID: 19358586
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single molecule spectroscopy reveals heterogeneous transport mechanisms for molecular ions in a polyelectrolyte polymer brush.
    Reznik C; Estillore N; Advincula RC; Landes CF
    J Phys Chem B; 2009 Nov; 113(44):14611-8. PubMed ID: 19813742
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Films of end-grafted hyaluronan are a prototype of a brush of a strongly charged, semiflexible polyelectrolyte with intrinsic excluded volume.
    Attili S; Borisov OV; Richter RP
    Biomacromolecules; 2012 May; 13(5):1466-77. PubMed ID: 22455455
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tuning the pH sensitivity of poly(methacrylic acid) brushes.
    Schüwer N; Klok HA
    Langmuir; 2011 Apr; 27(8):4789-96. PubMed ID: 21425827
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of counterion fluctuations in a polyelectrolyte brush.
    Santangelo CD; Lau AW
    Eur Phys J E Soft Matter; 2004 Apr; 13(4):335-44. PubMed ID: 15170532
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanoscale evaluation of lubricity on well-defined polymer brush surfaces using QCM-D and AFM.
    Kitano K; Inoue Y; Matsuno R; Takai M; Ishihara K
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):350-7. PubMed ID: 19720506
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adsorption of chitosan on PET films monitored by quartz crystal microbalance.
    Indest T; Laine J; Ribitsch V; Johansson LS; Stana-Kleinschek K; Strnad S
    Biomacromolecules; 2008 Aug; 9(8):2207-14. PubMed ID: 18588342
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Formation of pickering emulsions using ion-specific responsive colloids.
    Tan KY; Gautrot JE; Huck WT
    Langmuir; 2011 Feb; 27(4):1251-9. PubMed ID: 20839829
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Controlling tyrosinase activity on charged polyelectrolyte surfaces: a QCM-D analysis.
    Gormally MV; McKibben RK; Johal MS; Selassie CR
    Langmuir; 2009 Sep; 25(17):10014-9. PubMed ID: 19505131
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characteristics of the series resonant-frequency shift of a quartz crystal microbalance in electrolyte solutions.
    Yoshimoto M; Tokimura S; Kurosawa S
    Analyst; 2006 Oct; 131(10):1175-82. PubMed ID: 17003867
    [TBL] [Abstract][Full Text] [Related]  

  • 36. pH- and Electro-Responsive Properties of Poly(acrylic acid) and Poly(acrylic acid)-block-poly(acrylic acid-grad-styrene) Brushes Studied by Quartz Crystal Microbalance with Dissipation Monitoring.
    Borisova OV; Billon L; Richter RP; Reimhult E; Borisov OV
    Langmuir; 2015 Jul; 31(27):7684-94. PubMed ID: 26070329
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct observation of the phase transition for a poly(N-isopropylacryamide) layer grafted onto a solid surface by AFM and QCM-D.
    Ishida N; Biggs S
    Langmuir; 2007 Oct; 23(22):11083-8. PubMed ID: 17902714
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Study viscoelasticity of ultrathin poly(oligo(ethylene glycol) methacrylate) brushes by a quartz crystal microbalance with dissipation.
    Fu L; Chen X; He J; Xiong C; Ma H
    Langmuir; 2008 Jun; 24(12):6100-6. PubMed ID: 18481877
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Responsive Copolymer Brushes of Poly[(2-(Methacryloyloxy)Ethyl) Trimethylammonium Chloride] (PMETAC) and Poly((1)H,(1)H,(2)H,(2)H-Perfluorodecyl acrylate) (PPFDA) to Modulate Surface Wetting Properties.
    Politakos N; Azinas S; Moya SE
    Macromol Rapid Commun; 2016 Apr; 37(7):662-7. PubMed ID: 26872001
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polyelectrolyte brushes in external fields: molecular dynamics simulations and mean-field theory.
    Merlitz H; Li C; Wu C; Sommer JU
    Soft Matter; 2015 Jul; 11(28):5688-96. PubMed ID: 26096075
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.