These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 17552571)
1. Gate electrostatics and quantum capacitance of graphene nanoribbons. Guo J; Yoon Y; Ouyang Y Nano Lett; 2007 Jul; 7(7):1935-40. PubMed ID: 17552571 [TBL] [Abstract][Full Text] [Related]
2. Investigation of Electric Field Tunable Optical and Electrical Characteristics of Zigzag and Armchair Graphene Nanoribbons: An Ab Initio Approach. Emir R; Tuncsiper C; Surekci Yamacli D; Yamacli S; Tekin SA Nanomaterials (Basel); 2024 Sep; 14(17):. PubMed ID: 39269109 [TBL] [Abstract][Full Text] [Related]
3. Distinguishing Zigzag and Armchair Edges on Graphene Nanoribbons by X-ray Photoelectron and Raman Spectroscopies. Kim J; Lee N; Min YH; Noh S; Kim NK; Jung S; Joo M; Yamada Y ACS Omega; 2018 Dec; 3(12):17789-17796. PubMed ID: 31458375 [TBL] [Abstract][Full Text] [Related]
5. A guide to the design of electronic properties of graphene nanoribbons. Yazyev OV Acc Chem Res; 2013 Oct; 46(10):2319-28. PubMed ID: 23282074 [TBL] [Abstract][Full Text] [Related]
6. Strain effect on electronic structures of graphene nanoribbons: A first-principles study. Sun L; Li Q; Ren H; Su H; Shi QW; Yang J J Chem Phys; 2008 Aug; 129(7):074704. PubMed ID: 19044789 [TBL] [Abstract][Full Text] [Related]
7. Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study. Hu J; Ruan X; Chen YP Nano Lett; 2009 Jul; 9(7):2730-5. PubMed ID: 19499898 [TBL] [Abstract][Full Text] [Related]
8. Tuning the band gap of graphene nanoribbons synthesized from molecular precursors. Chen YC; de Oteyza DG; Pedramrazi Z; Chen C; Fischer FR; Crommie MF ACS Nano; 2013 Jul; 7(7):6123-8. PubMed ID: 23746141 [TBL] [Abstract][Full Text] [Related]
9. Emergent properties and trends of a new class of carbon nanocomposites: graphene nanoribbons encapsulated in a carbon nanotube. Kou L; Tang C; Wehling T; Frauenheim T; Chen C Nanoscale; 2013 Apr; 5(8):3306-14. PubMed ID: 23463363 [TBL] [Abstract][Full Text] [Related]
13. Mechanical manipulations on electronic transport of graphene nanoribbons. Wang J; Zhang G; Ye F; Wang X J Phys Condens Matter; 2015 Jun; 27(22):225305. PubMed ID: 25985040 [TBL] [Abstract][Full Text] [Related]
14. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Ritter KA; Lyding JW Nat Mater; 2009 Mar; 8(3):235-42. PubMed ID: 19219032 [TBL] [Abstract][Full Text] [Related]
15. Coulomb Oscillations in a Gate-Controlled Few-Layer Graphene Quantum Dot. Song Y; Xiong H; Jiang W; Zhang H; Xue X; Ma C; Ma Y; Sun L; Wang H; Duan L Nano Lett; 2016 Oct; 16(10):6245-6251. PubMed ID: 27632023 [TBL] [Abstract][Full Text] [Related]
17. Tailoring highly conductive graphene nanoribbons from small polycyclic aromatic hydrocarbons: a computational study. Bilić A; Sanvito S J Phys Condens Matter; 2013 Jul; 25(27):275301. PubMed ID: 23765375 [TBL] [Abstract][Full Text] [Related]
18. Enhanced conductance fluctuation by quantum confinement effect in graphene nanoribbons. Xu G; Torres CM; Song EB; Tang J; Bai J; Duan X; Zhang Y; Wang KL Nano Lett; 2010 Nov; 10(11):4590-4. PubMed ID: 20939609 [TBL] [Abstract][Full Text] [Related]
19. Measurement of the quantum capacitance of graphene. Xia J; Chen F; Li J; Tao N Nat Nanotechnol; 2009 Aug; 4(8):505-9. PubMed ID: 19662012 [TBL] [Abstract][Full Text] [Related]
20. Controlled Preparation and Device Application of Sub-5 nm Graphene Nanoribbons and Graphene Nanoribbon/Carbon Nanotube Intramolecular Heterostructures. He Z; Wang K; Yan C; Wan L; Zhou Q; Zhang T; Ye X; Zhang Y; Shi F; Jiang S; Zhao J; Wang K; Chen C ACS Appl Mater Interfaces; 2023 Feb; 15(5):7148-7156. PubMed ID: 36692227 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]