These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 17552579)

  • 1. Phase velocity and normalized broadband ultrasonic attenuation in Polyacetal cuboid bone-mimicking phantoms.
    Lee KI; Choi MJ
    J Acoust Soc Am; 2007 Jun; 121(6):EL263-9. PubMed ID: 17552579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurements of ultrasonic phase velocities and attenuation of slow waves in cellular aluminum foams as cancellous bone-mimicking phantoms.
    Zhang C; Le LH; Zheng R; Ta D; Lou E
    J Acoust Soc Am; 2011 May; 129(5):3317-26. PubMed ID: 21568432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dependences of ultrasonic properties on frequency and trabecular spacing in trabecular-bone-mimicking phantoms.
    Lee KI
    J Acoust Soc Am; 2015 Feb; 137(2):EL194-9. PubMed ID: 25698050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of porosity and pore size on the ultrasonic properties of bone investigated using a phantom material.
    Strelitzki R; Evans JA; Clarke AJ
    Osteoporos Int; 1997; 7(4):370-5. PubMed ID: 9373573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The acoustic properties, centered on 20 MHZ, of an IEC agar-based tissue-mimicking material and its temperature, frequency and age dependence.
    Brewin MP; Pike LC; Rowland DE; Birch MJ
    Ultrasound Med Biol; 2008 Aug; 34(8):1292-306. PubMed ID: 18343021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micro-scale finite element modeling of ultrasound propagation in aluminum trabecular bone-mimicking phantoms: A comparison between numerical simulation and experimental results.
    Vafaeian B; Le LH; Tran TN; El-Rich M; El-Bialy T; Adeeb S
    Ultrasonics; 2016 May; 68():17-28. PubMed ID: 26894840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasonic properties in marrow-filled and water-filled bovine femoral trabecular bones in vitro.
    Lee KI
    J Acoust Soc Am; 2012 Oct; 132(4):EL296-302. PubMed ID: 23039568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is the Kramers-Kronig relationship between ultrasonic attenuation and dispersion maintained in the presence of apparent losses due to phase cancellation?
    Bauer AQ; Marutyan KR; Holland MR; Miller JG
    J Acoust Soc Am; 2007 Jul; 122(1):222-8. PubMed ID: 17614481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasound attenuation in cylindrical micro-pores: nondestructive porometry of ion-track membranes.
    Gómez Alvarez-Arenas TE; Apel PY; Orelovitch O
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Nov; 55(11):2442-9. PubMed ID: 19049923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dependences of quantitative ultrasound parameters on frequency and porosity in water-saturated nickel foams.
    Lee KI
    J Acoust Soc Am; 2014 Feb; 135(2):EL61-7. PubMed ID: 25234916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bulk shear wave propagation in an epoxy: attenuation and phase velocity over five decades of frequency.
    Wang Y; Challis RE; Phang AP; Unwin ME
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Nov; 56(11):2504-13. PubMed ID: 19942536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of a gradient of material properties on ultrasonic wave propagation in cortical bone: application to axial transmission.
    Haïat G; Naili S; Grimal Q; Talmant M; Desceliers C; Soize C
    J Acoust Soc Am; 2009 Jun; 125(6):4043-52. PubMed ID: 19507985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a polymer, open-cell rigid foam that simulates the ultrasonic properties of cancellous bone.
    Hoffmeister BK; Huber MT; Viano AM; Huang J
    J Acoust Soc Am; 2018 Feb; 143(2):911. PubMed ID: 29495707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustic diagnosis for porous medium with circular cylindrical pores.
    Roh HS; Yoon SW
    J Acoust Soc Am; 2004 Mar; 115(3):1114-24. PubMed ID: 15058332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Negative dispersion in bone: the role of interference in measurements of the apparent phase velocity of two temporally overlapping signals.
    Bauer AQ; Marutyan KR; Holland MR; Miller JG
    J Acoust Soc Am; 2008 Apr; 123(4):2407-14. PubMed ID: 18397043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of phase velocity in trabecular bone mimicking-phantoms by time domain numerical (EFIT) and analytical multiple scattering approaches.
    Molero M; Medina L
    Ultrasonics; 2012 Sep; 52(7):809-14. PubMed ID: 22698989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A phantom for quantitative ultrasound of trabecular bone.
    Clarke AJ; Evans JA; Truscott JG; Milner R; Smith MA
    Phys Med Biol; 1994 Oct; 39(10):1677-87. PubMed ID: 15551538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationships of linear and nonlinear ultrasound parameters with porosity and trabecular spacing in trabecular-bone-mimicking phantoms.
    Lee KI
    J Acoust Soc Am; 2016 Dec; 140(6):EL528. PubMed ID: 28040043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of marrow on the high frequency ultrasonic properties of cancellous bone.
    Hoffmeister BK; Auwarter JA; Rho JY
    Phys Med Biol; 2002 Sep; 47(18):3419-27. PubMed ID: 12375829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasonic sound velocity measurement in samples of soft materials through under-resonance excitation.
    Ammann JJ; Apablaza V; Galaz B; Flores C
    Ultrasound Med Biol; 2005 Apr; 31(4):485-91. PubMed ID: 15831327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.