These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 17552690)

  • 1. An extended coupled phase theory for the sound propagation in polydisperse concentrated suspensions of rigid particles.
    Baudoin M; Thomas JL; Coulouvrat F; Lhuillier D
    J Acoust Soc Am; 2007 Jun; 121(6):3386-97. PubMed ID: 17552690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the influence of spatial correlations on sound propagation in concentrated solutions of rigid particles.
    Baudoin M; Thomas JL; Coulouvrat F
    J Acoust Soc Am; 2008 Jun; 123(6):4127-39. PubMed ID: 18537364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sound propagation in concentrated emulsions: comparison of coupled phase model and core-shell model.
    Evans JM; Attenborough K
    J Acoust Soc Am; 2002 Nov; 112(5 Pt 1):1911-7. PubMed ID: 12430802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of semidilute suspensions of non-Brownian fibers in shear flow.
    Lindström SB; Uesaka T
    J Chem Phys; 2008 Jan; 128(2):024901. PubMed ID: 18205469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical conductivity of aqueous salt-free concentrated suspensions. Effects of water dissociation and CO2 contamination.
    Carrique F; Ruiz-Reina E
    J Phys Chem B; 2009 Jul; 113(30):10261-70. PubMed ID: 19580303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple scattering from assemblies of dislocation walls in three dimensions. Application to propagation in polycrystals.
    Maurel A; Pagneux V; Barra F; Lund F
    J Acoust Soc Am; 2007 Jun; 121(6):3418-31. PubMed ID: 17552693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of the acoustic-wake effect to the attenuation of sound in dilute suspensions of rigid particles.
    González I; Gallego-Juárez JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Mar; 50(3):334-8. PubMed ID: 12699167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sound propagation above a porous road surface with extended reaction by boundary element method.
    Anfosso-Lédée F; Dangla P; Bérengier M
    J Acoust Soc Am; 2007 Aug; 122(2):731-6. PubMed ID: 17672623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effective viscosity of a concentrated suspension of uncharged spherical soft particles.
    Ohshima H
    Langmuir; 2010 May; 26(9):6287-94. PubMed ID: 20000425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the sound transmission between rooms coupled through partition walls by using a diffusion model.
    Billon A; Foy C; Picaut J; Valeau V; Sakout A
    J Acoust Soc Am; 2008 Jun; 123(6):4261-71. PubMed ID: 18537377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sound propagation in dilute suspensions of spheres: Analytical comparison between coupled phase model and multiple scattering theory.
    Valier-Brasier T; Conoir JM; Coulouvrat F; Thomas JL
    J Acoust Soc Am; 2015 Oct; 138(4):2598-612. PubMed ID: 26520342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasonic wave propagation in cementitious materials: a multiphase approach of a self-consistent multiple scattering model.
    Molero M; Segura I; Hernández MG; Izquierdo MA; Anaya JJ
    Ultrasonics; 2011 Jan; 51(1):71-84. PubMed ID: 20619866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupled hydrodynamic-acoustic modeling of sound generated by impacting cylindrical water jets.
    Chen X; Means SL; Szymczak WG; Rogers JC
    J Acoust Soc Am; 2008 Aug; 124(2):841-50. PubMed ID: 18681576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple scattering by cylinders immersed in fluid: high order approximations for the effective wavenumbers.
    Norris AN; Conoir JM
    J Acoust Soc Am; 2011 Jan; 129(1):104-13. PubMed ID: 21302992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attenuation and dispersion of sound in dilute suspensions of spherical particles.
    Temkin S
    J Acoust Soc Am; 2000 Jul; 108(1):126-46. PubMed ID: 10923878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental validation of a time domain simulation of high frequency ultrasonic propagation in a suspension of rigid particles.
    Galaz B; Haïat G; Berti R; Taulier N; Amman JJ; Urbach W
    J Acoust Soc Am; 2010 Jan; 127(1):148-54. PubMed ID: 20058958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of viscosity-concentration relationships for emulsions.
    Bullard JW; Pauli AT; Garboczi EJ; Martys NS
    J Colloid Interface Sci; 2009 Feb; 330(1):186-93. PubMed ID: 18995865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Viscosity minimum in bimodal concentrated suspensions under shear.
    Núñez A; Darias R; Pinto R; Paredes V R; Medina E
    Eur Phys J E Soft Matter; 2002 Nov; 9(4):327-34. PubMed ID: 15010902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasonic waves in diluted and densified suspensions.
    Jan Kowalski S
    Ultrasonics; 2004 Dec; 43(2):101-11. PubMed ID: 15530984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Theory of sound attenuation in the blood and erythrocyte suspensions].
    Zinin PV
    Biofizika; 1992; 37(1):158-63. PubMed ID: 1520713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.