These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 17552723)

  • 1. Numerical simulation of turbulence transition and sound radiation for flow through a rigid glottal model.
    Suh J; Frankel SH
    J Acoust Soc Am; 2007 Jun; 121(6):3728-39. PubMed ID: 17552723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing turbulence models for flow through a rigid glottal model.
    Suh J; Frankel SH
    J Acoust Soc Am; 2008 Mar; 123(3):1237-40. PubMed ID: 18345812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the aerodynamic sound of speech through static vocal tract models of various glottal shapes.
    Schickhofer L; Mihaescu M
    J Biomech; 2020 Jan; 99():109484. PubMed ID: 31761432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental investigation of the influence of a posterior gap on glottal flow and sound.
    Park JB; Mongeau L
    J Acoust Soc Am; 2008 Aug; 124(2):1171-9. PubMed ID: 18681605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational aeroacoustics of phonation, part I: Computational methods and sound generation mechanisms.
    Zhao W; Zhang C; Frankel SH; Mongeau L
    J Acoust Soc Am; 2002 Nov; 112(5 Pt 1):2134-46. PubMed ID: 12430825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analytic representation of volume flow as a function of geometry and pressure in a static physical model of the glottis.
    Fulcher LP; Scherer RC; Zhai G; Zhu Z
    J Voice; 2006 Dec; 20(4):489-512. PubMed ID: 16434169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aeroacoustics of T-junction merging flow.
    Lam GC; Leung RC; Tang SK
    J Acoust Soc Am; 2013 Feb; 133(2):697-708. PubMed ID: 23363089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical simulation and experimental validation of inverse quasi-one-dimensional steady and unsteady glottal flow models.
    Cisonni J; Van Hirtum A; Pelorson X; Willems J
    J Acoust Soc Am; 2008 Jul; 124(1):535-45. PubMed ID: 18646996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of glottal angle on intraglottal pressure.
    Li S; Scherer RC; Wan M; Wang S; Wu H
    J Acoust Soc Am; 2006 Jan; 119(1):539-48. PubMed ID: 16454307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling and measurement of flow effects on tracheal sounds.
    Harper VP; Pasterkamp H; Kiyokawa H; Wodicka GR
    IEEE Trans Biomed Eng; 2003 Jan; 50(1):1-10. PubMed ID: 12617519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow visualization and acoustic consequences of the air moving through a static model of the human larynx.
    Kucinschi BR; Scherer RC; DeWitt KJ; Ng TT
    J Biomech Eng; 2006 Jun; 128(3):380-90. PubMed ID: 16706587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broadband impedance boundary conditions for the simulation of sound propagation in the time domain.
    Bin J; Yousuff Hussaini M; Lee S
    J Acoust Soc Am; 2009 Feb; 125(2):664-75. PubMed ID: 19206844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric airflow and vibration induced by the Coanda effect in a symmetric model of the vocal folds.
    Tao C; Zhang Y; Hottinger DG; Jiang JJ
    J Acoust Soc Am; 2007 Oct; 122(4):2270-8. PubMed ID: 17902863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large Eddy Simulation and Reynolds-Averaged Navier-Stokes modeling of flow in a realistic pharyngeal airway model: an investigation of obstructive sleep apnea.
    Mihaescu M; Murugappan S; Kalra M; Khosla S; Gutmark E
    J Biomech; 2008 Jul; 41(10):2279-88. PubMed ID: 18514205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational simulations of vocal fold vibration: Bernoulli versus Navier-Stokes.
    Decker GZ; Thomson SL
    J Voice; 2007 May; 21(3):273-84. PubMed ID: 16504473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical study of dynamic glottis and tidal breathing on respiratory sounds in a human upper airway model.
    Xi J; Wang Z; Talaat K; Glide-Hurst C; Dong H
    Sleep Breath; 2018 May; 22(2):463-479. PubMed ID: 29101633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow visualization and pressure distributions in a model of the glottis with a symmetric and oblique divergent angle of 10 degrees.
    Shinwari D; Scherer RC; DeWitt KJ; Afjeh AA
    J Acoust Soc Am; 2003 Jan; 113(1):487-97. PubMed ID: 12558286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental evaluation of inverse filtering using physical systems with known glottal flow and tract characteristics.
    Chu DT; Li K; Epps J; Smith J; Wolfe J
    J Acoust Soc Am; 2013 May; 133(5):EL358-62. PubMed ID: 23656094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of entrance radii on intraglottal pressure distributions in the divergent glottis.
    Li S; Scherer RC; Wan M; Wang S
    J Acoust Soc Am; 2012 Feb; 131(2):1371-7. PubMed ID: 22352510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling sound propagation in acoustic waveguides using a hybrid numerical method.
    Kirby R
    J Acoust Soc Am; 2008 Oct; 124(4):1930-40. PubMed ID: 19062832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.