These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 17552734)

  • 1. Vocal tract length perturbation and its application to male-female vocal tract shape conversion.
    Adachi S; Takemoto H; Kitamura T; Mokhtari P; Honda K
    J Acoust Soc Am; 2007 Jun; 121(6):3874-85. PubMed ID: 17552734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A methodological and preliminary study on the acoustic effect of a trumpet player's vocal tract.
    Kaburagi T; Yamada N; Fukui T; Minamiya E
    J Acoust Soc Am; 2011 Jul; 130(1):536-45. PubMed ID: 21786919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A theoretical study of F0-F1 interaction with application to resonant speaking and singing voice.
    Titze IR
    J Voice; 2004 Sep; 18(3):292-8. PubMed ID: 15331101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geometry of human vocal folds and glottal channel for mathematical and biomechanical modeling of voice production.
    Sidlof P; Svec JG; Horácek J; Veselý J; Klepácek I; Havlík R
    J Biomech; 2008; 41(5):985-95. PubMed ID: 18289553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring and modeling vocal source-tract interaction.
    Childers DG; Wong CF
    IEEE Trans Biomed Eng; 1994 Jul; 41(7):663-71. PubMed ID: 7927387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voice of postradiotherapy nasopharyngeal carcinoma patients: evidence of vocal tract effect.
    Lin E; Hwang TZ; Hornibrook J; Ormond T
    J Voice; 2008 May; 22(3):351-64. PubMed ID: 17134872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Age- and sex-related variations in vocal-tract morphology and voice acoustics during adolescence.
    Markova D; Richer L; Pangelinan M; Schwartz DH; Leonard G; Perron M; Pike GB; Veillette S; Chakravarty MM; Pausova Z; Paus T
    Horm Behav; 2016 May; 81():84-96. PubMed ID: 27062936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in the human vocal tract due to aging and the acoustic correlates of speech production: a pilot study.
    Xue SA; Hao GJ
    J Speech Lang Hear Res; 2003 Jun; 46(3):689-701. PubMed ID: 14696995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tracheal length changes during zebra finch song and their possible role in upper vocal tract filtering.
    Daley M; Goller F
    J Neurobiol; 2004 Jun; 59(3):319-30. PubMed ID: 15146548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-speed registration of phonation-related glottal area variation during artificial lengthening of the vocal tract.
    Laukkanen AM; Pulakka H; Alku P; Vilkman E; Hertegård S; Lindestad PA; Larsson H; Granqvist S
    Logoped Phoniatr Vocol; 2007; 32(4):157-64. PubMed ID: 17917980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vocal tract length and formant frequency dispersion correlate with body size in rhesus macaques.
    Fitch WT
    J Acoust Soc Am; 1997 Aug; 102(2 Pt 1):1213-22. PubMed ID: 9265764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vocal tract and register changes analysed by real-time MRI in male professional singers-a pilot study.
    Echternach M; Sundberg J; Arndt S; Breyer T; Markl M; Schumacher M; Richter B
    Logoped Phoniatr Vocol; 2008; 33(2):67-73. PubMed ID: 18569645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of vocal tract configuration of older children with Down syndrome: a pilot study.
    Xue SA; Kaine L; Ng ML
    Int J Pediatr Otorhinolaryngol; 2010 Apr; 74(4):378-83. PubMed ID: 20149933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Producing American English vowels during vocal tract growth: a perceptual categorization study of synthesized vowels.
    Ménard L; Davis BL; Boë LJ; Roy JP
    J Speech Lang Hear Res; 2009 Oct; 52(5):1268-85. PubMed ID: 19696438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the relation between the phonation threshold lung pressure and the oscillation frequency of the vocal folds.
    Lucero JC; Koenig LL
    J Acoust Soc Am; 2007 Jun; 121(6):3280-3. PubMed ID: 17552679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hybrid approach to the computational aeroacoustics of human voice production.
    Šidlof P; Zörner S; Hüppe A
    Biomech Model Mechanobiol; 2015 Jun; 14(3):473-88. PubMed ID: 25288479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Source-tract interaction with prescribed vocal fold motion.
    McGowan RS; Howe MS
    J Acoust Soc Am; 2012 Apr; 131(4):2999-3016. PubMed ID: 22501076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualisation of hypopharyngeal cavities and vocal-tract acoustic modelling.
    Honda K; Kitamura T; Takemoto H; Adachi S; Mokhtari P; Takano S; Nota Y; Hirata H; Fujimoto I; Shimada Y; Masaki S; Fujita S; Dang J
    Comput Methods Biomech Biomed Engin; 2010 Aug; 13(4):443-53. PubMed ID: 20635261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Physiology of the voice and speech].
    Oeken FW
    Z Arztl Fortbild (Jena); 1967 Nov; 61(22):1158-63. PubMed ID: 5585458
    [No Abstract]   [Full Text] [Related]  

  • 20. Identification of synthetic vowels based on a time-varying model of the vocal tract area function.
    Bunton K; Story BH
    J Acoust Soc Am; 2010 Apr; 127(4):EL146-52. PubMed ID: 20369982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.