These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 17552734)

  • 41. An age-dependent vocal tract model for males and females based on anatomic measurements.
    Story BH; Vorperian HK; Bunton K; Durtschi RB
    J Acoust Soc Am; 2018 May; 143(5):3079. PubMed ID: 29857736
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Limits on tongue deformation--Diana monkey formants and the impossible vocal tract shapes proposed by Riede et al. (2005).
    Lieberman P
    J Hum Evol; 2006 Feb; 50(2):219-21; discussion 222-5. PubMed ID: 16376410
    [No Abstract]   [Full Text] [Related]  

  • 43. Vocal production mechanisms in a non-human primate: morphological data and a model.
    Riede T; Bronson E; Hatzikirou H; Zuberbühler K
    J Hum Evol; 2005 Jan; 48(1):85-96. PubMed ID: 15656937
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Frequency response of the skin on the head and neck during production of selected speech sounds.
    Munger JB; Thomson SL
    J Acoust Soc Am; 2008 Dec; 124(6):4001-12. PubMed ID: 19206823
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Vocal tract length and acoustics of vocalization in the domestic dog (Canis familiaris).
    Riede T; Fitch T
    J Exp Biol; 1999 Oct; 202(Pt 20):2859-67. PubMed ID: 10504322
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Preliminary design for a VI system combining the voice acoustic analyzing and glottal image analyzing].
    Pan Y; Liu Y; Cai X; Li Q; Meng Y; Xu X; Sun W; Zhang Y; Li X; Qi Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):291-4. PubMed ID: 18610608
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An acoustical study of sound production in biphonic singing, Xöömij.
    Adachi S; Yamada M
    J Acoust Soc Am; 1999 May; 105(5):2920-32. PubMed ID: 10335641
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Simulation and analysis of nasalized vowels based on magnetic resonance imaging data.
    Pruthi T; Espy-Wilson CY; Story BH
    J Acoust Soc Am; 2007 Jun; 121(6):3858-73. PubMed ID: 17552733
    [TBL] [Abstract][Full Text] [Related]  

  • 49. How to precisely measure the volume velocity transfer function of physical vocal tract models by external excitation.
    Fleischer M; Mainka A; Kürbis S; Birkholz P
    PLoS One; 2018; 13(3):e0193708. PubMed ID: 29543829
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Closed phase covariance analysis based on constrained linear prediction for glottal inverse filtering.
    Alku P; Magi C; Yrttiaho S; Bäckström T; Story B
    J Acoust Soc Am; 2009 May; 125(5):3289-305. PubMed ID: 19425671
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Technique for "tuning" vocal tract area functions based on acoustic sensitivity functions.
    Story BH
    J Acoust Soc Am; 2006 Feb; 119(2):715-8. PubMed ID: 16521730
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A noninvasive acoustic method using frequency perturbations and computer-generated vocal-tract shapes.
    Beckman DA; Wold DC; Montague JC
    J Speech Hear Res; 1983 Jun; 26(2):304-14. PubMed ID: 6224967
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Vocal tract resonance characteristics of adults with obstructive sleep apnea.
    Robb MP; Yates J; Morgan EJ
    Acta Otolaryngol; 1997 Sep; 117(5):760-3. PubMed ID: 9349877
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Visualization of change of sound characteristics on the level of the vocal cords.
    Luchsinger R
    J S Afr Speech Hear Assoc; 1973 Dec; 20(1):42-6. PubMed ID: 4780834
    [No Abstract]   [Full Text] [Related]  

  • 55. Inter-speaker speech variability assessment using statistical deformable models from 3.0 tesla magnetic resonance images.
    Vasconcelos MJ; Ventura SM; Freitas DR; Tavares JM
    Proc Inst Mech Eng H; 2012 Mar; 226(3):185-96. PubMed ID: 22558833
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The human vocal cords: a mathematical model. I.
    Titze IR
    Phonetica; 1973; 28(3):129-70. PubMed ID: 4788091
    [No Abstract]   [Full Text] [Related]  

  • 57. Objective detection and quantification of mucosal wave propagation.
    Voigt D; Döllinger M; Eysholdt U; Yang A; Gürlek E; Lohscheller J
    J Acoust Soc Am; 2010 Nov; 128(5):EL347-53. PubMed ID: 21110550
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Using statistical deformable models to reconstruct vocal tract shape from magnetic resonance images.
    Vasconcelos MJ; Rua Ventura SM; Freitas DR; Tavares JM
    Proc Inst Mech Eng H; 2010 Oct; 224(10):1153-63. PubMed ID: 21138233
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Formant frequencies and bandwidths of the vocal tract transfer function are affected by the mechanical impedance of the vocal tract wall.
    Fleischer M; Pinkert S; Mattheus W; Mainka A; Mürbe D
    Biomech Model Mechanobiol; 2015 Aug; 14(4):719-33. PubMed ID: 25416844
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Individual differences in vocal size exaggeration.
    Belyk M; Waters S; Kanber E; Miquel ME; McGettigan C
    Sci Rep; 2022 Feb; 12(1):2611. PubMed ID: 35173178
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.