BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 17552737)

  • 1. Three-dimensional finite element modeling of guided ultrasound wave propagation in intact and healing long bones.
    Protopappas VC; Kourtis IC; Kourtis LC; Malizos KN; Massalas CV; Fotiadis DI
    J Acoust Soc Am; 2007 Jun; 121(6):3907-21. PubMed ID: 17552737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comment on "Three-dimensional finite element modeling of guided ultrasound wave propagation in intact and healing long bones," [J. Acoust. Soc. Am. 121(6), 3907-3921 (2007)].
    Guo X; Zhang D; Yang D; Gong X; Wu J
    J Acoust Soc Am; 2008 Jun; 123(6):4047-50. PubMed ID: 18537356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Guided ultrasound wave propagation in intact and healing long bones.
    Protopappas VC; Fotiadis DI; Malizos KN
    Ultrasound Med Biol; 2006 May; 32(5):693-708. PubMed ID: 16677929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of long-range ultrasonic guided wave characteristics in cortical bone by modelling.
    Guha A; Aynardi M; Shokouhi P; Lissenden CJ
    Ultrasonics; 2021 Jul; 114():106407. PubMed ID: 33667952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of boundary conditions on guided wave propagation in two-dimensional models of healing bone.
    Vavva MG; Protopappas VC; Gergidis LN; Charalambopoulos A; Fotiadis DI; Polyzos D
    Ultrasonics; 2008 Nov; 48(6-7):598-606. PubMed ID: 18571687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical evaluation of the backward propagating acoustic field in healing long bones.
    Potsika VT; Protopappas VC; Grivas KN; Gortsas TV; Raum K; Polyzos DK; Fotiadis DI
    J Acoust Soc Am; 2017 Aug; 142(2):962. PubMed ID: 28863592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative evaluation of fracture healing process of long bones using guided ultrasound waves: a computational feasibility study.
    Guo X; Yang D; Zhang D; Li W; Qiu Y; Wu J
    J Acoust Soc Am; 2009 May; 125(5):2834-7. PubMed ID: 19425628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Guided ultrasonic waves in long bones: modelling, experiment and in vivo application.
    Nicholson PH; Moilanen P; Kärkkäinen T; Timonen J; Cheng S
    Physiol Meas; 2002 Nov; 23(4):755-68. PubMed ID: 12450274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of an effective medium theory for modeling ultrasound wave propagation in healing long bones.
    Potsika VT; Grivas KN; Protopappas VC; Vavva MG; Raum K; Rohrbach D; Polyzos D; Fotiadis DI
    Ultrasonics; 2014 Jul; 54(5):1219-30. PubMed ID: 24091149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excitation of ultrasonic Lamb waves using a phased array system with two array probes: phantom and in vitro bone studies.
    Nguyen KC; Le LH; Tran TN; Sacchi MD; Lou EH
    Ultrasonics; 2014 Jul; 54(5):1178-85. PubMed ID: 24074751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micro-scale finite element modeling of ultrasound propagation in aluminum trabecular bone-mimicking phantoms: A comparison between numerical simulation and experimental results.
    Vafaeian B; Le LH; Tran TN; El-Rich M; El-Bialy T; Adeeb S
    Ultrasonics; 2016 May; 68():17-28. PubMed ID: 26894840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of the dispersion and attenuation of cylindrical ultrasonic guided waves in long bone.
    Ta D; Wang W; Wang Y; Le LH; Zhou Y
    Ultrasound Med Biol; 2009 Apr; 35(4):641-52. PubMed ID: 19153000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling elastic waves in coupled media: Estimate of soft tissue influence and application to quantitative ultrasound.
    Chen J; Cheng L; Su Z; Qin L
    Ultrasonics; 2013 Feb; 53(2):350-62. PubMed ID: 22858152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational study of the influence of callus porosity on ultrasound propagation in healing bones.
    Potsika VT; Spiridon IF; Protopappas VC; Vavva MG; Lymperopoulos PD; Massalas CV; Polyzos DK; Fotiadis DI
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():684-7. PubMed ID: 25570051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiridge-based analysis for separating individual modes from multimodal guided wave signals in long bones.
    Xu K; Ta D; Wang W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Nov; 57(11):2480-90. PubMed ID: 21041135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of ultrasonic wave propagation in anisotropic poroelastic bone plate using hybrid spectral/finite element method.
    Nguyen VH; Naili S
    Int J Numer Method Biomed Eng; 2012 Aug; 28(8):861-76. PubMed ID: 25099567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A numerical study on the propagation of Rayleigh and guided waves in cortical bone according to Mindlin's Form II gradient elastic theory.
    Papacharalampopoulos A; Vavva MG; Protopappas VC; Fotiadis DI; Polyzos D
    J Acoust Soc Am; 2011 Aug; 130(2):1060-70. PubMed ID: 21877818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity analysis of ultrasonic guided waves propagating in trilayered bone models: a numerical study.
    Tran TNHT; Le LH; Sacchi MD; Nguyen VH
    Biomech Model Mechanobiol; 2018 Oct; 17(5):1269-1279. PubMed ID: 29777322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noninvasive assessment of human jawbone using ultrasonic guided waves.
    Mahmoud A; Cortes D; Abaza A; Ammar H; Hazey M; Ngan P; Crout R; Mukdadi O
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1316-27. PubMed ID: 18599419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3-D finite element simulation for ultrasonic propagation in tooth.
    Sun X; Witzel EA; Bian H; Kang S
    J Dent; 2008 Jul; 36(7):546-53. PubMed ID: 18514378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.