BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

391 related articles for article (PubMed ID: 17552782)

  • 1. Equilibrium and nonequilibrium molecular dynamics simulations of the thermal conductivity of molten alkali halides.
    Galamba N; Nieto de Castro CA; Ely JF
    J Chem Phys; 2007 May; 126(20):204511. PubMed ID: 17552782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal conductivity of molten alkali halides from equilibrium molecular dynamics simulations.
    Galamba N; Nieto de Castro CA; Ely JF
    J Chem Phys; 2004 May; 120(18):8676-82. PubMed ID: 15267797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shear viscosity of molten alkali halides from equilibrium and nonequilibrium molecular-dynamics simulations.
    Galamba N; de Castro CA; Ely JF
    J Chem Phys; 2005 Jun; 122(22):224501. PubMed ID: 15974685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Equivalence of the EMD- and NEMD-based decomposition of thermal conductivity into microscopic building blocks.
    Matsubara H; Kikugawa G; Ishikiriyama M; Yamashita S; Ohara T
    J Chem Phys; 2017 Sep; 147(11):114104. PubMed ID: 28938811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal conductivity of ionic systems from equilibrium molecular dynamics.
    Salanne M; Marrocchelli D; Merlet C; Ohtori N; Madden PA
    J Phys Condens Matter; 2011 Mar; 23(10):102101. PubMed ID: 21335634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soret coefficient for liquid argon-krypton mixtures via equilibrium and nonequilibrium molecular dynamics: a comparison with experiments.
    Perronace A; Ciccotti G; Leroy F; Fuchs AH; Rousseau B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 1):031201. PubMed ID: 12366100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal conductivity of highly asymmetric binary mixtures: how important are heat/mass coupling effects?
    Armstrong J; Bresme F
    Phys Chem Chem Phys; 2014 Jun; 16(24):12307-16. PubMed ID: 24818599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal conductivity of molten alkali halides: Temperature and density dependence.
    Ohtori N; Oono T; Takase K
    J Chem Phys; 2009 Jan; 130(4):044505. PubMed ID: 19191396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal conductivity of solid argon from molecular dynamics simulations.
    Tretiakov KV; Scandolo S
    J Chem Phys; 2004 Feb; 120(8):3765-9. PubMed ID: 15268540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A nonequilibrium molecular dynamics method for thermal conductivities based on thermal noise.
    Terao T; Müller-Plathe F
    J Chem Phys; 2005 Feb; 122(8):81103. PubMed ID: 15836013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristics of thermal conductivity in classical water models.
    Sirk TW; Moore S; Brown EF
    J Chem Phys; 2013 Feb; 138(6):064505. PubMed ID: 23425477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anisotropy of the thermal conductivity of stretched amorphous polystyrene in supercritical carbon dioxide studied by reverse nonequilibrium molecular dynamics simulations.
    Algaer EA; Alaghemandi M; Böhm MC; Müller-Plathe F
    J Phys Chem B; 2009 Nov; 113(44):14596-603. PubMed ID: 19863137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport properties of 2F <==> F2 in a temperature gradient as studied by molecular dynamics simulations.
    Xu J; Kjelstrup S; Bedeaux D; Simon JM
    Phys Chem Chem Phys; 2007 Feb; 9(8):969-81. PubMed ID: 17301887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal conductivity of solid argon at high pressure and high temperature: a molecular dynamics study.
    Tretiakov KV; Scandolo S
    J Chem Phys; 2004 Dec; 121(22):11177-82. PubMed ID: 15634072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonequilibrium molecular dynamics calculation of the thermal conductivity based on an improved relaxation scheme.
    Cao BY
    J Chem Phys; 2008 Aug; 129(7):074106. PubMed ID: 19044759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal conductivity of amorphous polystyrene in supercritical carbon dioxide studied by reverse nonequilibrium molecular dynamics simulations.
    Algaer EA; Alaghemandi M; Böhm MC; Müller-Plathe F
    J Phys Chem A; 2009 Oct; 113(43):11487-94. PubMed ID: 19569703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of heat current formulations for equilibrium molecular dynamics calculations of thermal conductivity.
    Guajardo-Cuéllar A; Go DB; Sen M
    J Chem Phys; 2010 Mar; 132(10):104111. PubMed ID: 20232951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of Thermal Conductivities of Rubbers by MD Simulations-New Insights.
    Vasilev A; Lorenz T; Breitkopf C
    Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35631927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistical mechanical theory for steady state systems. IV. Transition probability and simulation algorithm demonstrated for heat flow.
    Attard P
    J Chem Phys; 2006 Jan; 124(2):024109. PubMed ID: 16422573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Equilibrium and nonequilibrium molecular dynamics simulations of thermal conductance at solid-gas interfaces.
    Liang Z; Evans W; Keblinski P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022119. PubMed ID: 23496472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.