BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

654 related articles for article (PubMed ID: 17552846)

  • 1. High-temperature superconducting quantum interference device with cooled LC resonant circuit for measuring alternating magnetic fields with improved signal-to-noise ratio.
    Qiu L; Zhang Y; Krause HJ; Braginski AI; Usoskin A
    Rev Sci Instrum; 2007 May; 78(5):054701. PubMed ID: 17552846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Method for nonlinear characterization of radio frequency coils made of high temperature superconducting material in view of magnetic resonance imaging applications.
    Girard O; Ginefri JC; Poirier-Quinot M; Darrasse L
    Rev Sci Instrum; 2007 Dec; 78(12):124703. PubMed ID: 18163742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superconducting quantum interference device setup for magnetoelectric measurements.
    Borisov P; Hochstrat A; Shvartsman VV; Kleemann W
    Rev Sci Instrum; 2007 Oct; 78(10):106105. PubMed ID: 17979461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multifrequency magnetic induction tomography system using planar gradiometers: data collection and calibration.
    Rosell-Ferrer J; Merwa R; Brunner P; Scharfetter H
    Physiol Meas; 2006 May; 27(5):S271-80. PubMed ID: 16636418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of superconducting contacts for the CRESST II 66-channel superconducting quantum interference device readout system.
    Majorovits B; Henry S; Kraus H
    Rev Sci Instrum; 2007 Jul; 78(7):073301. PubMed ID: 17672757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An ultralow noise current amplifier based on superconducting quantum interference device for high sensitivity applications.
    Granata C; Vettoliere A; Russo M
    Rev Sci Instrum; 2011 Jan; 82(1):013901. PubMed ID: 21280839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurements of magnetic field stability in inhomogeneous magnetic fields at low temperature.
    Hugon C; Jacquinot JF; Sakellariou D
    J Magn Reson; 2010 Jan; 202(1):1-8. PubMed ID: 19884026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ac Modeling and impedance spectrum tests of the superconducting magnetic field coils for the Wendelstein 7-X fusion experiment.
    Ehmler H; Köppen M
    Rev Sci Instrum; 2007 Oct; 78(10):104705. PubMed ID: 17979447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of NMR signals with a radio-frequency atomic magnetometer.
    Savukov IM; Seltzer SJ; Romalis MV
    J Magn Reson; 2007 Apr; 185(2):214-20. PubMed ID: 17208476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-field NMR using resistive and hybrid magnets.
    Gan Z; Kwak HT; Bird M; Cross T; Gor'kov P; Brey W; Shetty K
    J Magn Reson; 2008 Mar; 191(1):135-40. PubMed ID: 18226940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution NMR with resistive and hybrid magnets: deconvolution using a field-fluctuation signal.
    Iijima T; Takegoshi K; Hashi K; Fujito T; Shimizu T
    J Magn Reson; 2007 Feb; 184(2):258-62. PubMed ID: 17123849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Globally optimal superconducting magnets part II: symmetric MSE coil arrangement.
    Tieng QM; Vegh V; Brereton IM
    J Magn Reson; 2009 Jan; 196(1):7-11. PubMed ID: 18848794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and evaluation of intermediate frequency magnetic field exposure system for studies of in vitro biological effects.
    Fujita A; Hirota I; Kawahara Y; Omori H
    Bioelectromagnetics; 2007 Oct; 28(7):538-45. PubMed ID: 17570495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional distribution of the electric field induced in the brain by transcranial magnetic stimulation using figure-8 and deep H-coils.
    Roth Y; Amir A; Levkovitz Y; Zangen A
    J Clin Neurophysiol; 2007 Feb; 24(1):31-8. PubMed ID: 17277575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational and experimental optimization of a double-tuned (1)H/(31)P four-ring birdcage head coil for MRS at 3T.
    Duan Y; Peterson BS; Liu F; Brown TR; Ibrahim TS; Kangarlu A
    J Magn Reson Imaging; 2009 Jan; 29(1):13-22. PubMed ID: 19097097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A single magnetic field exposure system for sequential investigation of real time and downstream cellular responses.
    Rao RR; Kisaalita WS
    Bioelectromagnetics; 2004 Jan; 25(1):27-32. PubMed ID: 14696050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microwave band on-chip coil technique for single electron spin resonance in a quantum dot.
    Obata T; Pioro-Ladrière M; Kubo T; Yoshida K; Tokura Y; Tarucha S
    Rev Sci Instrum; 2007 Oct; 78(10):104704. PubMed ID: 17979446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gradient coil design using Bi-2223 high temperature superconducting tape for magnetic resonance imaging.
    Yuan J; Shen GX
    Med Eng Phys; 2007 May; 29(4):442-8. PubMed ID: 16875861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Technical aspects: development, manufacture and installation of a cryo-cooled HTS coil system for high-resolution in-vivo imaging of the mouse at 1.5 T.
    Ginefri JC; Poirier-Quinot M; Girard O; Darrasse L
    Methods; 2007 Sep; 43(1):54-67. PubMed ID: 17720564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronics for a high temperature superconducting receiver system for magnetic resonance microimaging.
    Black RD; Roemer PB; Mueller OM
    IEEE Trans Biomed Eng; 1994 Feb; 41(2):195-7. PubMed ID: 8026853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.