These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 17553100)

  • 1. Slit-Robo interactions during cortical development.
    Andrews WD; Barber M; Parnavelas JG
    J Anat; 2007 Aug; 211(2):188-98. PubMed ID: 17553100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of Slit-Robo signaling in the generation, migration and morphological differentiation of cortical interneurons.
    Andrews W; Barber M; Hernadez-Miranda LR; Xian J; Rakic S; Sundaresan V; Rabbitts TH; Pannell R; Rabbitts P; Thompson H; Erskine L; Murakami F; Parnavelas JG
    Dev Biol; 2008 Jan; 313(2):648-58. PubMed ID: 18054781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GAPs in Slit-Robo signaling.
    Ghose A; Van Vactor D
    Bioessays; 2002 May; 24(5):401-4. PubMed ID: 12001262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robo1 regulates the development of major axon tracts and interneuron migration in the forebrain.
    Andrews W; Liapi A; Plachez C; Camurri L; Zhang J; Mori S; Murakami F; Parnavelas JG; Sundaresan V; Richards LJ
    Development; 2006 Jun; 133(11):2243-52. PubMed ID: 16690755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FLRT2 and FLRT3 Cooperate in Maintaining the Tangential Migratory Streams of Cortical Interneurons during Development.
    Fleitas C; Marfull-Oromí P; Chauhan D; Del Toro D; Peguera B; Zammou B; Rocandio D; Klein R; Espinet C; Egea J
    J Neurosci; 2021 Sep; 41(35):7350-7362. PubMed ID: 34301831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lhx6 activity is required for the normal migration and specification of cortical interneuron subtypes.
    Liodis P; Denaxa M; Grigoriou M; Akufo-Addo C; Yanagawa Y; Pachnis V
    J Neurosci; 2007 Mar; 27(12):3078-89. PubMed ID: 17376969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The SLIT-ROBO pathway: a regulator of cell function with implications for the reproductive system.
    Dickinson RE; Duncan WC
    Reproduction; 2010 Apr; 139(4):697-704. PubMed ID: 20100881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecules and mechanisms involved in the generation and migration of cortical interneurons.
    Hernández-Miranda LR; Parnavelas JG; Chiara F
    ASN Neuro; 2010 Mar; 2(2):e00031. PubMed ID: 20360946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential gene expression in migrating cortical interneurons during mouse forebrain development.
    Faux C; Rakic S; Andrews W; Yanagawa Y; Obata K; Parnavelas JG
    J Comp Neurol; 2010 Apr; 518(8):1232-48. PubMed ID: 20151419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of Robo3 in the development of cortical interneurons.
    Barber M; Di Meglio T; Andrews WD; Hernández-Miranda LR; Murakami F; Chédotal A; Parnavelas JG
    Cereb Cortex; 2009 Jul; 19 Suppl 1(Suppl 1):i22-31. PubMed ID: 19366869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential gene expression in migratory streams of cortical interneurons.
    Antypa M; Faux C; Eichele G; Parnavelas JG; Andrews WD
    Eur J Neurosci; 2011 Nov; 34(10):1584-94. PubMed ID: 22103416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurons on the move: migration and lamination of cortical interneurons.
    Faux C; Rakic S; Andrews W; Britto JM
    Neurosignals; 2012; 20(3):168-89. PubMed ID: 22572780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perspectives of SLIT/ROBO signaling in placental angiogenesis.
    Liao WX; Wing DA; Geng JG; Chen DB
    Histol Histopathol; 2010 Sep; 25(9):1181-90. PubMed ID: 20607660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The multifaceted roles of Slits and Robos in cortical circuits: from proliferation to axon guidance and neurological diseases.
    Blockus H; Chédotal A
    Curr Opin Neurobiol; 2014 Aug; 27():82-8. PubMed ID: 24698714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The origin and migration of cortical neurones: new vistas.
    Parnavelas JG
    Trends Neurosci; 2000 Mar; 23(3):126-31. PubMed ID: 10675917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contact-associated neurite outgrowth and branching of immature cortical interneurons.
    Sang Q; Tan SS
    Cereb Cortex; 2003 Jun; 13(6):677-83. PubMed ID: 12764044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of cortical dendrite development by Slit-Robo interactions.
    Whitford KL; Marillat V; Stein E; Goodman CS; Tessier-Lavigne M; Chédotal A; Ghosh A
    Neuron; 2002 Jan; 33(1):47-61. PubMed ID: 11779479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of tangential/non-radial migration of neurons in the developing cerebral cortex.
    Nakajima K
    Neurochem Int; 2007; 51(2-4):121-31. PubMed ID: 17588709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cortical interneurons and their origins.
    Wonders C; Anderson SA
    Neuroscientist; 2005 Jun; 11(3):199-205. PubMed ID: 15911869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-cell autonomous control of precerebellar neuron migration by Slit and Robo proteins.
    Dominici C; Rappeneau Q; Zelina P; Fouquet S; Chédotal A
    Development; 2018 Jan; 145(2):. PubMed ID: 29343636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.