BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 17553449)

  • 1. Label-free detection of protein interactions using deep UV fluorescence lifetime microscopy.
    Li Q; Seeger S
    Anal Biochem; 2007 Aug; 367(1):104-10. PubMed ID: 17553449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Label-free detection of single protein molecules using deep UV fluorescence lifetime microscopy.
    Li Q; Seeger S
    Anal Chem; 2006 Apr; 78(8):2732-7. PubMed ID: 16615786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. UV fluorescence lifetime imaging microscopy: a label-free method for detection and quantification of protein interactions.
    Schüttpelz M; Müller C; Neuweiler H; Sauer M
    Anal Chem; 2006 Feb; 78(3):663-9. PubMed ID: 16448037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-color two-photon excitation of intrinsic protein fluorescence: label-free observation of proteolytic digestion of bovine serum albumin.
    Quentmeier S; Quentmeier CC; Walla PJ; Gericke KH
    Chemphyschem; 2009 Jul; 10(9-10):1607-13. PubMed ID: 19156800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multidonor deep-UV FRET study of protein-ligand binding and its potential to obtain structure information.
    Li Q; Seeger S
    J Phys Chem B; 2011 Nov; 115(46):13643-9. PubMed ID: 21995593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligand binding of a ribosome-displayed protein detected in solution at the single molecule level by fluorescence correlation spectroscopy.
    Jermutus L; Kolly R; Földes-Papp Z; Hanes J; Rigler R; Plückthun A
    Eur Biophys J; 2002 Jun; 31(3):179-84. PubMed ID: 12029330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep UV laser-induced fluorescence detection of unlabeled drugs and proteins in microchip electrophoresis.
    Schulze P; Ludwig M; Kohler F; Belder D
    Anal Chem; 2005 Mar; 77(5):1325-9. PubMed ID: 15732914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined non-linear laser imaging (two-photon excitation fluorescence microscopy, fluorescence lifetime imaging microscopy, multispectral multiphoton microscopy) in cutaneous tumours: first experiences.
    De Giorgi V; Massi D; Sestini S; Cicchi R; Pavone FS; Lotti T
    J Eur Acad Dermatol Venereol; 2009 Mar; 23(3):314-6. PubMed ID: 19207664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-photon excited fluorescence detection at 420 nm for label-free detection of small aromatics and proteins in microchip electrophoresis.
    Schulze P; Schüttpelz M; Sauer M; Belder D
    Lab Chip; 2007 Dec; 7(12):1841-4. PubMed ID: 18030410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Label-free analysis in chip electrophoresis applying deep UV fluorescence lifetime detection.
    Beyreiss R; Ohla S; Nagl S; Belder D
    Electrophoresis; 2011 Nov; 32(22):3108-14. PubMed ID: 22102494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-photon lifetime imaging of fluorescent probes in intact blood vessels: a window to sub-cellular structural information and binding status.
    Douma K; Megens RT; Reitsma S; Prinzen L; Slaaf DW; Van Zandvoort MA
    Microsc Res Tech; 2007 May; 70(5):467-75. PubMed ID: 17393531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An ultraviolet fluorescence-based method for identifying and distinguishing protein crystals.
    Judge RA; Swift K; González C
    Acta Crystallogr D Biol Crystallogr; 2005 Jan; 61(Pt 1):60-6. PubMed ID: 15608376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single cell analysis in full body quartz glass chips with native UV laser-induced fluorescence detection.
    Greif D; Galla L; Ros A; Anselmetti D
    J Chromatogr A; 2008 Oct; 1206(1):83-8. PubMed ID: 18657818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of the stereoselectivity of an anti-amino acid antibody using molecular modeling and ligand docking.
    Ranieri DI; Corgliano DM; Franco EJ; Hofstetter H; Hofstetter O
    Chirality; 2008 Mar; 20(3-4):559-70. PubMed ID: 18172831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein microarray system for detecting protein-protein interactions using an anti-His-tag antibody and fluorescence scanning: effects of the heme redox state on protein-protein interactions of heme-regulated phosphodiesterase from Escherichia coli.
    Sasakura Y; Kanda K; Yoshimura-Suzuki T; Matsui T; Fukuzono S; Han MH; Shimizu T
    Anal Chem; 2004 Nov; 76(22):6521-7. PubMed ID: 15538771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-molecule detection and identification of multiple species by multiparameter fluorescence detection.
    Widengren J; Kudryavtsev V; Antonik M; Berger S; Gerken M; Seidel CA
    Anal Chem; 2006 Mar; 78(6):2039-50. PubMed ID: 16536444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Label-free detection of single protein molecules and protein-protein interactions using synthetic nanopores.
    Han A; Creus M; Schürmann G; Linder V; Ward TR; de Rooij NF; Staufer U
    Anal Chem; 2008 Jun; 80(12):4651-8. PubMed ID: 18470996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of laser excitation intensity on deep UV fluorescence detection in microchip electrophoresis.
    Schulze P; Ludwig M; Belder D
    Electrophoresis; 2008 Dec; 29(24):4894-9. PubMed ID: 19025868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of the interaction between SNAP25 and rabphilin in neuroendocrine PC12 cells using the FLIM/FRET technique.
    Lee JD; Chang YF; Kao FJ; Kao LS; Lin CC; Lu AC; Shyu BC; Chiou SH; Yang DM
    Microsc Res Tech; 2008 Jan; 71(1):26-34. PubMed ID: 17886343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single protein complex visualization: seeing is believing.
    Lievens S; Tavernier J
    Nat Methods; 2006 Dec; 3(12):971-2. PubMed ID: 17117151
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.