These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 17553627)

  • 41. Exploring the Various Aspects of Brain-Derived Neurotropic Factor (BDNF) in Diabetes Mellitus.
    Sharma E; Behl T; Mehta V; Kumar A; Setia D; Uddin MS; Zengin G; Arora S
    CNS Neurol Disord Drug Targets; 2021; 20(1):22-33. PubMed ID: 33059570
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Age-dependent time course of cerebral brain-derived neurotrophic factor, nerve growth factor, and neurotrophin-3 in APP23 transgenic mice.
    Schulte-Herbrüggen O; Eckart S; Deicke U; Kühl A; Otten U; Danker-Hopfe H; Abramowski D; Staufenbiel M; Hellweg R
    J Neurosci Res; 2008 Sep; 86(12):2774-83. PubMed ID: 18438945
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Control of energy homeostasis by insulin and leptin: targeting the arcuate nucleus and beyond.
    Könner AC; Klöckener T; Brüning JC
    Physiol Behav; 2009 Jul; 97(5):632-8. PubMed ID: 19351541
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dysfunctions of leptin, ghrelin, BDNF and endocannabinoids in eating disorders: beyond the homeostatic control of food intake.
    Monteleone P; Maj M
    Psychoneuroendocrinology; 2013 Mar; 38(3):312-30. PubMed ID: 23313276
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Brain-Derived Neurotrophic Factor (BDNF): role of this neurotrophin in cardiovascular physiopathology].
    Lorgis L; Amoureux S; Vergely C; Zeller M; Cottin Y; Rochette L
    Ann Cardiol Angeiol (Paris); 2009 Apr; 58(2):99-103. PubMed ID: 19281964
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genetic increase in brain-derived neurotrophic factor levels enhances learning and memory.
    Nakajo Y; Miyamoto S; Nakano Y; Xue JH; Hori T; Yanamoto H
    Brain Res; 2008 Nov; 1241():103-9. PubMed ID: 18801341
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Glucose sensing and the pathogenesis of obesity and type 2 diabetes.
    Thorens B
    Int J Obes (Lond); 2008 Dec; 32 Suppl 6():S62-71. PubMed ID: 19079282
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The hypothalamic H1 receptor: a novel therapeutic target for disrupting diurnal feeding rhythm and obesity.
    Masaki T; Yoshimatsu H
    Trends Pharmacol Sci; 2006 May; 27(5):279-84. PubMed ID: 16584790
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The use of animal models in the study of diabetes mellitus.
    Chatzigeorgiou A; Halapas A; Kalafatakis K; Kamper E
    In Vivo; 2009; 23(2):245-58. PubMed ID: 19414410
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Role of gut microflora in the development of obesity and insulin resistance following high-fat diet feeding.
    Cani PD; Delzenne NM; Amar J; Burcelin R
    Pathol Biol (Paris); 2008 Jul; 56(5):305-9. PubMed ID: 18178333
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ghrelin is a physiological regulator of insulin release in pancreatic islets and glucose homeostasis.
    Dezaki K; Sone H; Yada T
    Pharmacol Ther; 2008 May; 118(2):239-49. PubMed ID: 18433874
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Is BDNF biological link between depression and type 2 diabetes mellitus?
    Wang J; Zhao X; He M
    Med Hypotheses; 2012 Aug; 79(2):255-8. PubMed ID: 22626954
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A teleological view of obesity, diabetes and hypertension.
    Landsberg L
    Clin Exp Pharmacol Physiol; 2006 Sep; 33(9):863-7. PubMed ID: 16922822
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Insulin resistance in the defense against obesity.
    Saltiel AR
    Cell Metab; 2012 Jun; 15(6):798-804. PubMed ID: 22682220
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The selfish brain: Competition for energy resources.
    Peters A
    Am J Hum Biol; 2011; 23(1):29-34. PubMed ID: 21080380
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Role of exercise-induced brain-derived neurotrophic factor production in the regulation of energy homeostasis in mammals.
    Pedersen BK; Pedersen M; Krabbe KS; Bruunsgaard H; Matthews VB; Febbraio MA
    Exp Physiol; 2009 Dec; 94(12):1153-60. PubMed ID: 19748969
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [New discoveries about the cause of diabetes. Type 2 diabetes mellitus changed to "obesity-dependent diabetes mellitus"].
    Astrup AV; Madsbad S; Finer N
    Ugeskr Laeger; 2001 Jan; 163(2):141-3. PubMed ID: 11379236
    [No Abstract]   [Full Text] [Related]  

  • 58. Glucose homeostasis and endogenous opioid peptides.
    Ramabadran K; Bansinath M
    Int J Clin Pharmacol Ther Toxicol; 1990 Mar; 28(3):89-98. PubMed ID: 2180828
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Unraveling the brain regulation of appetite: lessons from genetics.
    Yeo GS; Heisler LK
    Nat Neurosci; 2012 Oct; 15(10):1343-9. PubMed ID: 23007189
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Novel factors as therapeutic targets to treat diabetes. Focus on leptin and ghrelin.
    Gómez R; Lago F; Gómez-Reino JJ; Gualillo O
    Expert Opin Ther Targets; 2009 May; 13(5):583-91. PubMed ID: 19397477
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.