These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 1755364)

  • 1. Dynamic actin interaction of crossbridges: a general principle and its implications for crossbridge action in muscle.
    Brenner B
    Adv Biophys; 1991; 27():259-69. PubMed ID: 1755364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the myosin adenosine triphosphate (M.ATP) crossbridge in rabbit and frog skeletal muscle fibers.
    Schoenberg M
    Biophys J; 1988 Jul; 54(1):135-48. PubMed ID: 3261996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crossbridge scheme and the kinetic constants of elementary steps deduced from chemically skinned papillary and trabecular muscles of the ferret.
    Kawai M; Saeki Y; Zhao Y
    Circ Res; 1993 Jul; 73(1):35-50. PubMed ID: 8508533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model of crossbridge action: the effects of ATP, ADP and Pi.
    Pate E; Cooke R
    J Muscle Res Cell Motil; 1989 Jun; 10(3):181-96. PubMed ID: 2527246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of doubly attached crossbridges on the mechanical behavior of skeletal muscle fibers under equilibrium conditions.
    Tozeren A
    Biophys J; 1987 Nov; 52(5):901-6. PubMed ID: 3427193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid dissociation and reassociation of actomyosin cross-bridges during force generation: a newly observed facet of cross-bridge action in muscle.
    Brenner B
    Proc Natl Acad Sci U S A; 1991 Dec; 88(23):10490-4. PubMed ID: 1835789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Equilibrium muscle crossbridge behavior: the interaction of myosin crossbridges with actin.
    Schoenberg M
    Adv Biophys; 1993; 29():55-73. PubMed ID: 8140945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The kinetics of weakly- and strongly-binding crossbridges: implications for contraction and relaxation.
    Schoenberg M
    Adv Exp Med Biol; 1988; 226():189-202. PubMed ID: 3261486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The endothermic ATP hydrolysis and crossbridge attachment steps drive the increase of force with temperature in isometric and shortening muscle.
    Offer G; Ranatunga KW
    J Physiol; 2015 Apr; 593(8):1997-2016. PubMed ID: 25564737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphate increase during fatigue affects crossbridge kinetics in intact mouse muscle at physiological temperature.
    Nocella M; Cecchi G; Colombini B
    J Physiol; 2017 Jul; 595(13):4317-4328. PubMed ID: 28332714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crossbridge head detachment rate constants determined from a model that explains the behavior of both weakly- and strongly-binding crossbridges.
    Schoenberg M
    Adv Exp Med Biol; 1998; 453():425-33; discussion 433-4. PubMed ID: 9889854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sliding distance of actin filament induced by a myosin crossbridge during one ATP hydrolysis cycle.
    Yanagida T; Arata T; Oosawa F
    Nature; 1985 Jul 25-31; 316(6026):366-9. PubMed ID: 4022127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathway of the microtubule-dynein ATPase and the structure of dynein: a comparison with actomyosin.
    Johnson KA
    Annu Rev Biophys Biophys Chem; 1985; 14():161-88. PubMed ID: 3159394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repriming the actomyosin crossbridge cycle.
    Steffen W; Sleep J
    Proc Natl Acad Sci U S A; 2004 Aug; 101(35):12904-9. PubMed ID: 15326285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Creatine phosphate consumption and the actomyosin crossbridge cycle in cardiac muscles.
    Ogut O; Brozovich FV
    Circ Res; 2003 Jul; 93(1):54-60. PubMed ID: 12791710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. X-ray diffraction studies on muscle during rapid shortening and their implications concerning crossbridge behaviour.
    Huxley HE; Kress M; Faruqi AF; Simmons RM
    Adv Exp Med Biol; 1988; 226():347-52. PubMed ID: 3407520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crossbridge and non-crossbridge contributions to force in shortening and lengthening muscle.
    Ranatunga KW; Roots H; Pinniger GJ; Offer GW
    Adv Exp Med Biol; 2010; 682():207-21. PubMed ID: 20824528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of shortening on energy liberation and high energy phosphate hydrolysis in frog skeletal muscle.
    Homsher E; Irving M; Yamada T
    Adv Exp Med Biol; 1984; 170():865-81. PubMed ID: 6741722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic X-ray diffraction measurements following photolytic relaxation and activation of skinned rabbit psoas fibres.
    Poole KJ; Maeda Y; Rapp G; Goody RS
    Adv Biophys; 1991; 27():63-75. PubMed ID: 1836710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of MgATP on forming and breaking actin-myosin linkages in contracted skinned insect flight muscle fibres.
    Kuhn HJ; Bletz C; Güth K; Rüegg JC
    J Muscle Res Cell Motil; 1985 Feb; 6(1):5-27. PubMed ID: 3159751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.