These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 1755365)

  • 21. Structural changes of the regulatory proteins bound to the thin filaments in skeletal muscle contraction by X-ray fiber diffraction.
    Sugimoto Y; Takezawa Y; Matsuo T; Ueno Y; Minakata S; Tanaka H; Wakabayashi K
    Biochem Biophys Res Commun; 2008 Apr; 369(1):100-8. PubMed ID: 18082133
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A structural origin of latency relaxation in frog skeletal muscle.
    Yagi N
    Biophys J; 2007 Jan; 92(1):162-71. PubMed ID: 17028137
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural changes in the myosin filament and cross-bridges during active force development in single intact frog muscle fibres: stiffness and X-ray diffraction measurements.
    Brunello E; Bianco P; Piazzesi G; Linari M; Reconditi M; Panine P; Narayanan T; Helsby WI; Irving M; Lombardi V
    J Physiol; 2006 Dec; 577(Pt 3):971-84. PubMed ID: 16990403
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural changes during contraction in vertebrate skeletal muscle as studied by time-resolved X-ray diffraction technique.
    Sugi H; Tanaka H; Wakabayashi K; Kobayashi T; Iwamoto H; Hamanaka T; Mitsui T; Amemiya Y
    Biomed Biochim Acta; 1986; 45(1-2):S15-22. PubMed ID: 3485970
    [TBL] [Abstract][Full Text] [Related]  

  • 25. X-ray Diffraction Studies on the Structural Origin of Dynamic Tension Recovery Following Ramp-Shaped Releases in High-Ca Rigor Muscle Fibers.
    Sugi H; Yamaguchi M; Ohno T; Okuyama H; Yagi N
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32069889
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural changes in actin-tropomyosin during muscle regulation: computer modelling of low-angle X-ray diffraction data.
    al-Khayat HA; Yagi N; Squire JM
    J Mol Biol; 1995 Oct; 252(5):611-32. PubMed ID: 7563078
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Muscle force is generated by myosin heads stereospecifically attached to actin.
    Bershitsky SY; Tsaturyan AK; Bershitskaya ON; Mashanov GI; Brown P; Burns R; Ferenczi MA
    Nature; 1997 Jul; 388(6638):186-90. PubMed ID: 9217160
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An X-ray diffraction study of frog skeletal muscle during shortening near the maximum velocity.
    Yagi N; Takemori S; Watanabe M
    J Mol Biol; 1993 Jun; 231(3):668-77. PubMed ID: 8515444
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Special Issue: The Actin-Myosin Interaction in Muscle: Background and Overview.
    Squire J
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31739584
    [TBL] [Abstract][Full Text] [Related]  

  • 30. X-ray studies of order-disorder transitions in the myosin heads of skinned rabbit psoas muscles.
    Lowy J; Popp D; Stewart AA
    Biophys J; 1991 Oct; 60(4):812-24. PubMed ID: 1742454
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sarcomere-length dependence of myosin filament structure in skeletal muscle fibres of the frog.
    Reconditi M; Brunello E; Fusi L; Linari M; Martinez MF; Lombardi V; Irving M; Piazzesi G
    J Physiol; 2014 Mar; 592(5):1119-37. PubMed ID: 24344169
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Binding of myosin subfragment 1 to glycerinated insect flight muscle in the rigor state.
    Goody RS; Reedy MC; Hofmann W; Holmes KC; Reedy MK
    Biophys J; 1985 Feb; 47(2 Pt 1):151-69. PubMed ID: 3978197
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Time-resolved X-ray diffraction studies of myosin head movements in live frog sartorius muscle during isometric and isotonic contractions.
    Martin-Fernandez ML; Bordas J; Diakun G; Harries J; Lowy J; Mant GR; Svensson A; Towns-Andrews E
    J Muscle Res Cell Motil; 1994 Jun; 15(3):319-48. PubMed ID: 7857403
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Return of myosin heads to thick filaments after muscle contraction.
    Yagi N; Ito MH; Nakajima H; Izumi T; Matsubara I
    Science; 1977 Aug; 197(4304):685-7. PubMed ID: 301660
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Calcium ions and the structure of muscle actin filament. An X-ray diffraction study.
    Popp D; MaƩda Y
    J Mol Biol; 1993 Jan; 229(2):279-85. PubMed ID: 8429546
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The structural basis of the increase in isometric force production with temperature in frog skeletal muscle.
    Linari M; Brunello E; Reconditi M; Sun YB; Panine P; Narayanan T; Piazzesi G; Lombardi V; Irving M
    J Physiol; 2005 Sep; 567(Pt 2):459-69. PubMed ID: 15961426
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The structure of insect flight muscle in the presence of AMPPNP.
    Reedy MC; Reedy MK; Goody RS
    J Muscle Res Cell Motil; 1987 Dec; 8(6):473-503. PubMed ID: 3443682
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural alterations of thin actin filaments in muscle contraction by synchrotron X-ray fiber diffraction.
    Wakabayashi K; Sugimoto Y; Takezawa Y; Ueno Y; Minakata S; Oshima K; Matsuo T; Kobayashi T
    Adv Exp Med Biol; 2007; 592():327-40. PubMed ID: 17278377
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Myosin head movements are synchronous with the elementary force-generating process in muscle.
    Irving M; Lombardi V; Piazzesi G; Ferenczi MA
    Nature; 1992 May; 357(6374):156-8. PubMed ID: 1579164
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Changes in the X-ray diffraction pattern from rigor muscles by application of external length changes.
    Tanaka H; Wakabayashi K; Amemiya Y
    Adv Biophys; 1991; 27():105-14. PubMed ID: 1755354
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.