BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 1755368)

  • 1. X-ray studies of thin filaments in a tonically contracting molluscan smooth muscle.
    Tajima Y; Amemiya Y
    Adv Biophys; 1991; 27():77-88. PubMed ID: 1755368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intensity changes of actin-based layer lines from frog skeletal muscles during an isometric contraction.
    Wakabayashi K; Ueno Y; Amemiya Y; Tanaka H
    Adv Exp Med Biol; 1988; 226():353-67. PubMed ID: 3261487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray structure analysis of thin filaments of a molluscan smooth muscle in the living relaxed state.
    Tajima Y; Kamiya K; Seto T
    Biophys J; 1983 Sep; 43(3):335-43. PubMed ID: 6684956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. X-ray evidence for the elongation of thin and thick filaments during isometric contraction of a molluscan smooth muscle.
    Tajima Y; Makino K; Hanyuu T; Wakabayashi K; Amemiya Y
    J Muscle Res Cell Motil; 1994 Dec; 15(6):659-71. PubMed ID: 7706422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An x-ray diffraction study of contracting molluscan smooth muscle.
    Millman BM; Elliott GF
    Biophys J; 1972 Nov; 12(11):1405-14. PubMed ID: 4642219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X-ray diffraction studies on oriented gels of vertebrate smooth muscle thin filaments.
    Popp D; Holmes KC
    J Mol Biol; 1992 Mar; 224(1):65-76. PubMed ID: 1532210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intensity increases of actin layer-lines on activation of the Limulus muscle.
    MaƩda Y; Boulin C; Gabriel A; Sumner I; Koch MH
    Biophys J; 1986 Dec; 50(6):1035-42. PubMed ID: 3801566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. X-ray diffraction studies on muscle regulation.
    Popp D; Maeda Y; Stewart AA; Holmes KC
    Adv Biophys; 1991; 27():89-103. PubMed ID: 1755369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction.
    Wakabayashi K; Sugimoto Y; Tanaka H; Ueno Y; Takezawa Y; Amemiya Y
    Biophys J; 1994 Dec; 67(6):2422-35. PubMed ID: 7779179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The structure of actin-rich filaments of muscles according to x-ray diffraction.
    SELBY CC; BEAR RS
    J Biophys Biochem Cytol; 1956 Jan; 2(1):71-85. PubMed ID: 13295312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crossbridge states in isometrically contracting fish muscle: evidence for swinging of myosin heads on actin.
    Harford JJ; Chew MW; Squire JM; Towns-Andrews E
    Adv Biophys; 1991; 27():45-61. PubMed ID: 1755367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direction and speed of actin filaments moving along thick filaments isolated from molluscan smooth muscle.
    Yamada A; Ishii N; Takahashi K
    J Biochem; 1990 Sep; 108(3):341-3. PubMed ID: 2277026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic X-ray diffraction of skeletal muscle contraction: structural change of actin filaments.
    Wakabayashi K; Tanaka H; Saito H; Moriwaki N; Ueno Y; Amemiya Y
    Adv Biophys; 1991; 27():3-13. PubMed ID: 1755365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laser-stimulated luminescence used to measure x-ray diffraction of a contracting striated muscle.
    Amemiya Y; Wakabayashi K; Tanaka H; Ueno Y; Miyahara J
    Science; 1987 Jul; 237(4811):164-8. PubMed ID: 3496662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The first thin filament layer line decreases in intensity during an isometric contraction of frog skeletal muscle.
    Wakabayashi K; Saito H; Moriwaki N; Kobayashi T; Tanaka H
    Adv Exp Med Biol; 1993; 332():451-60. PubMed ID: 8109357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-resolved X-ray diffraction studies of the structural behaviour of myosin heads in a living contracting unstriated muscle.
    Lowy J; Poulsen FR
    Nature; 1982 Sep; 299(5881):308-12. PubMed ID: 7110355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tropomyosin movement is described by a quantitative high-resolution model of X-ray diffraction of contracting muscle.
    Koubassova NA; Bershitsky SY; Ferenczi MA; Narayanan T; Tsaturyan AK
    Eur Biophys J; 2017 May; 46(4):335-342. PubMed ID: 27640143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural changes in actin-tropomyosin during muscle regulation: computer modelling of low-angle X-ray diffraction data.
    al-Khayat HA; Yagi N; Squire JM
    J Mol Biol; 1995 Oct; 252(5):611-32. PubMed ID: 7563078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-dimensional time-resolved X-ray diffraction studies of live isometrically contracting frog sartorius muscle.
    Bordas J; Diakun GP; Diaz FG; Harries JE; Lewis RA; Lowy J; Mant GR; Martin-Fernandez ML; Towns-Andrews E
    J Muscle Res Cell Motil; 1993 Jun; 14(3):311-24. PubMed ID: 8360320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A cellular automaton model for the regulatory behavior of muscle thin filaments.
    Zou G; Phillips GN
    Biophys J; 1994 Jul; 67(1):11-28. PubMed ID: 7918978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.