These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 17553761)

  • 1. Diffuse-interface theory for structure formation and release behavior in controlled drug release systems.
    Saylor DM; Kim CS; Patwardhan DV; Warren JA
    Acta Biomater; 2007 Nov; 3(6):851-64. PubMed ID: 17553761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soy matrix drug delivery systems obtained by melt-processing techniques.
    Vaz CM; van Doeveren PF; Reis RL; Cunha AM
    Biomacromolecules; 2003; 4(6):1520-9. PubMed ID: 14606876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting microstructure development during casting of drug-eluting coatings.
    Saylor DM; Guyer JE; Wheeler D; Warren JA
    Acta Biomater; 2011 Feb; 7(2):604-13. PubMed ID: 20858554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PLGA-based drug delivery systems: importance of the type of drug and device geometry.
    Klose D; Siepmann F; Elkharraz K; Siepmann J
    Int J Pharm; 2008 Apr; 354(1-2):95-103. PubMed ID: 18055140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of process and formulation parameters on characteristics and internal morphology of poly(d,l-lactide-co-glycolide) microspheres formed by the solvent evaporation method.
    Mao S; Shi Y; Li L; Xu J; Schaper A; Kissel T
    Eur J Pharm Biopharm; 2008 Feb; 68(2):214-23. PubMed ID: 17651954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular interactions, internal structure and drug release kinetics of rationally developed polymer-lipid hybrid nanoparticles.
    Li Y; Wong HL; Shuhendler AJ; Rauth AM; Wu XY
    J Control Release; 2008 May; 128(1):60-70. PubMed ID: 18406489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimising the incorporation and release of a neurotrophic factor using conducting polypyrrole.
    Thompson BC; Moulton SE; Ding J; Richardson R; Cameron A; O'Leary S; Wallace GG; Clark GM
    J Control Release; 2006 Dec; 116(3):285-94. PubMed ID: 17112619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel mathematical model quantifying drug release from lipid implants.
    Siepmann F; Herrmann S; Winter G; Siepmann J
    J Control Release; 2008 Jun; 128(3):233-40. PubMed ID: 18442866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of drug release through the in situ assembly of stimuli-responsive ordered mesoporous silica with magnetic particles.
    Zhu S; Zhou Z; Zhang D
    Chemphyschem; 2007 Dec; 8(17):2478-83. PubMed ID: 17952885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of nano drug carriers towards optimum release rate.
    Ng EY; Ng WK
    J Med Eng Technol; 2007; 31(4):243-52. PubMed ID: 17566928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antibiotic-eluting bioresorbable composite fibers for wound healing applications: microstructure, drug delivery and mechanical properties.
    Elsner JJ; Zilberman M
    Acta Biomater; 2009 Oct; 5(8):2872-83. PubMed ID: 19416766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-vitro controlled release of doxorubicin from silica xerogels.
    Prokopowicz M
    J Pharm Pharmacol; 2007 Oct; 59(10):1365-73. PubMed ID: 17910811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tailored drug release from biodegradable stent coatings based on hybrid polyurethanes.
    Guo Q; Knight PT; Mather PT
    J Control Release; 2009 Aug; 137(3):224-33. PubMed ID: 19376173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular automata model for swelling-controlled drug release.
    Laaksonen H; Hirvonen J; Laaksonen T
    Int J Pharm; 2009 Oct; 380(1-2):25-32. PubMed ID: 19563871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled release of drugs from multi-component biomaterials.
    Zalfen AM; Nizet D; Jérôme C; Jérôme R; Frankenne F; Foidart JM; Maquet V; Lecomte F; Hubert P; Evrard B
    Acta Biomater; 2008 Nov; 4(6):1788-96. PubMed ID: 18583206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strategic approaches for improving entrapment of hydrophilic peptide drugs by lipid nanoparticles.
    Yuan H; Jiang SP; Du YZ; Miao J; Zhang XG; Hu FQ
    Colloids Surf B Biointerfaces; 2009 May; 70(2):248-53. PubMed ID: 19185474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling solvent evaporation during the manufacture of controlled drug-release coatings and the impact on release kinetics.
    Kim CS; Saylor DM; McDermott MK; Patwardhan DV; Warren JA
    J Biomed Mater Res B Appl Biomater; 2009 Aug; 90(2):688-99. PubMed ID: 19213052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drug release from ion-exchange microspheres: mathematical modeling and experimental verification.
    Abdekhodaie MJ; Wu XY
    Biomaterials; 2008 Apr; 29(11):1654-63. PubMed ID: 18192000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoparticle infiltration to prepare solvent-free controlled drug delivery systems.
    Rodríguez-Cruz IM; Domínguez-Delgado CL; Escobar-Chávez JJ; Leyva-Gómez G; Ganem-Quintanar A; Quintanar-Guerrero D
    Int J Pharm; 2009 Apr; 371(1-2):177-81. PubMed ID: 19150491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anomalous release of hydrophilic drugs from poly(epsilon-caprolactone) matrices.
    Rosenberg R; Devenney W; Siegel S; Dan N
    Mol Pharm; 2007; 4(6):943-8. PubMed ID: 17960890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.