BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 17554496)

  • 21. Pseudo-CSA restraints for NMR refinement of nucleic acid structure.
    Grishaev A; Ying J; Bax A
    J Am Chem Soc; 2006 Aug; 128(31):10010-1. PubMed ID: 16881619
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Determinations of 15N chemical shift anisotropy magnitudes in a uniformly 15N,13C-labeled microcrystalline protein by three-dimensional magic-angle spinning nuclear magnetic resonance spectroscopy.
    Wylie BJ; Franks WT; Rienstra CM
    J Phys Chem B; 2006 Jun; 110(22):10926-36. PubMed ID: 16771346
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dipolar chemical shift correlation spectroscopy for homonuclear carbon distance measurements in proteins in the solid state: application to structure determination and refinement.
    Peng X; Libich D; Janik R; Harauz G; Ladizhansky V
    J Am Chem Soc; 2008 Jan; 130(1):359-69. PubMed ID: 18072776
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multidimensional solid state NMR of anisotropic interactions in peptides and proteins.
    Wylie BJ; Rienstra CM
    J Chem Phys; 2008 Feb; 128(5):052207. PubMed ID: 18266412
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cross correlations between 13C-1H dipolar interactions and 15N chemical shift anisotropy in nucleic acids.
    Ravindranathan S; Kim CH; Bodenhausen G
    J Biomol NMR; 2003 Dec; 27(4):365-75. PubMed ID: 14512733
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Site-specific variations of carbonyl chemical shift anisotropies in proteins.
    Markwick PR; Sattler M
    J Am Chem Soc; 2004 Sep; 126(37):11424-5. PubMed ID: 15366873
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using the chemical shift anisotropy tensor of carbonyl backbone nuclei as a probe of secondary structure in proteins.
    Elavarasi SB; Kumari A; Dorai K
    J Phys Chem A; 2010 May; 114(18):5830-7. PubMed ID: 20402537
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Band-selective carbonyl to aliphatic side chain 13C-13C distance measurements in U-13C,15N-labeled solid peptides by magic angle spinning NMR.
    Ladizhansky V; Griffin RG
    J Am Chem Soc; 2004 Jan; 126(3):948-58. PubMed ID: 14733572
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Limited variations in 15N CSA magnitudes and orientations in ubiquitin are revealed by joint analysis of longitudinal and transverse NMR relaxation.
    Damberg P; Jarvet J; Gräslund A
    J Am Chem Soc; 2005 Feb; 127(6):1995-2005. PubMed ID: 15701036
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Insight into the CSA tensors of nucleobase carbons in RNA polynucleotides from solution measurements of residual CSA: towards new long-range orientational constraints.
    Hansen AL; Al-Hashimi HM
    J Magn Reson; 2006 Apr; 179(2):299-307. PubMed ID: 16431143
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Paramagnetism-based restraints for Xplor-NIH.
    Banci L; Bertini I; Cavallaro G; Giachetti A; Luchinat C; Parigi G
    J Biomol NMR; 2004 Mar; 28(3):249-61. PubMed ID: 14752258
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determination of solid-state NMR structures of proteins by means of three-dimensional 15N-13C-13C dipolar correlation spectroscopy and chemical shift analysis.
    Castellani F; van Rossum BJ; Diehl A; Rehbein K; Oschkinat H
    Biochemistry; 2003 Oct; 42(39):11476-83. PubMed ID: 14516199
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Docking of protein-protein complexes on the basis of highly ambiguous intermolecular distance restraints derived from 1H/15N chemical shift mapping and backbone 15N-1H residual dipolar couplings using conjoined rigid body/torsion angle dynamics.
    Clore GM; Schwieters CD
    J Am Chem Soc; 2003 Mar; 125(10):2902-12. PubMed ID: 12617657
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Residue specific ribose and nucleobase dynamics of the cUUCGg RNA tetraloop motif by MNMR 13C relaxation.
    Duchardt E; Schwalbe H
    J Biomol NMR; 2005 Aug; 32(4):295-308. PubMed ID: 16211483
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Amplitudes of protein backbone dynamics and correlated motions in a small alpha/beta protein: correspondence of dipolar coupling and heteronuclear relaxation measurements.
    Clore GM; Schwieters CD
    Biochemistry; 2004 Aug; 43(33):10678-91. PubMed ID: 15311929
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determination of methyl 13C-15N dipolar couplings in peptides and proteins by three-dimensional and four-dimensional magic-angle spinning solid-state NMR spectroscopy.
    Helmus JJ; Nadaud PS; Höfer N; Jaroniec CP
    J Chem Phys; 2008 Feb; 128(5):052314. PubMed ID: 18266431
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 1H, 15N, and 13C resonance assignment of the amino-terminal domain of the Tfb1 subunit of yeast TFIIH.
    Nguyen BD; Di Lello P; Legault P; Omichinski JG
    J Biomol NMR; 2005 Feb; 31(2):173-4. PubMed ID: 15772758
    [No Abstract]   [Full Text] [Related]  

  • 38. Experimental and theoretical investigation of the 13C and 15N chemical shift tensors in melanostatin-exploring the chemical shift tensor as a structural probe.
    Strohmeier M; Grant DM
    J Am Chem Soc; 2004 Jan; 126(3):966-77. PubMed ID: 14733574
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of fast backbone dynamics at amide nitrogen and carbonyl sites in dematin headpiece C-terminal domain and its S74E mutant.
    Vugmeyster L; Ostrovsky D; Li Y
    J Biomol NMR; 2010 Jun; 47(2):155-62. PubMed ID: 20396930
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determination of the backbone torsion psi angle by tensor correlation of chemical shift anisotropy and heteronuclear dipole-dipole interaction.
    Mou Y; Tsai TW; Chan JC
    Solid State Nucl Magn Reson; 2007 Apr; 31(2):72-81. PubMed ID: 17329083
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.