These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 17554496)

  • 61. Fast structure-based assignment of 15N HSQC spectra of selectively 15N-labeled paramagnetic proteins.
    Pintacuda G; Keniry MA; Huber T; Park AY; Dixon NE; Otting G
    J Am Chem Soc; 2004 Mar; 126(9):2963-70. PubMed ID: 14995214
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Temperature dependence of fast carbonyl backbone dynamics in chicken villin headpiece subdomain.
    Vugmeyster L; Ostrovsky D
    J Biomol NMR; 2011 Jun; 50(2):119-27. PubMed ID: 21416162
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Determination of 13C CSA tensors: extension of the model-independent approach to an RNA kissing complex undergoing anisotropic rotational diffusion in solution.
    Ravindranathan S; Kim CH; Bodenhausen G
    J Biomol NMR; 2005 Nov; 33(3):163-74. PubMed ID: 16331421
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Tryptophan sidechain dynamics in hydrophobic oligopeptides determined by use of 13C nuclear magnetic resonance spectroscopy.
    Weaver AJ; Kemple MD; Prendergast FG
    Biophys J; 1988 Jul; 54(1):1-15. PubMed ID: 3416021
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Protein structure refinement using 13C alpha chemical shift tensors.
    Wylie BJ; Schwieters CD; Oldfield E; Rienstra CM
    J Am Chem Soc; 2009 Jan; 131(3):985-92. PubMed ID: 19123862
    [TBL] [Abstract][Full Text] [Related]  

  • 66. De novo determination of protein structure by NMR using orientational and long-range order restraints.
    Hus JC; Marion D; Blackledge M
    J Mol Biol; 2000 May; 298(5):927-36. PubMed ID: 10801359
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Molecular-orientation analysis based on alignment-induced TROSY chemical shift changes.
    Tate S; Shimahara H; Utsunomiya-Tate N
    J Magn Reson; 2004 Dec; 171(2):284-92. PubMed ID: 15546755
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Solution structure, rotational diffusion anisotropy and local backbone dynamics of Rhodobacter capsulatus cytochrome c2.
    Cordier F; Caffrey M; Brutscher B; Cusanovich MA; Marion D; Blackledge M
    J Mol Biol; 1998 Aug; 281(2):341-61. PubMed ID: 9698552
    [TBL] [Abstract][Full Text] [Related]  

  • 69. New probes of ligand flexibility in drug design: transferred (13)C CSA-dipolar cross-correlated relaxation at natural abundance.
    Peng JW
    J Am Chem Soc; 2003 Sep; 125(36):11116-30. PubMed ID: 12952494
    [TBL] [Abstract][Full Text] [Related]  

  • 70. TROSY experiment for refinement of backbone psi and phi by simultaneous measurements of cross-correlated relaxation rates and 3,4J(H alpha HN) coupling constants.
    Vögeli B; Pervushin K
    J Biomol NMR; 2002 Dec; 24(4):291-300. PubMed ID: 12522294
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Quantitative measurement of transverse and longitudinal cross-correlation between 13C-1H dipolar interaction and 13C chemical shift anisotropy: application to a 13C-labeled DNA duplex.
    Kojima C; Ono A; Kainosho M; James TL
    J Magn Reson; 1999 Feb; 136(2):169-75. PubMed ID: 9986759
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Temperature dependence of protein backbone motion from carbonyl 13C and amide 15N NMR relaxation.
    Chang SL; Tjandra N
    J Magn Reson; 2005 May; 174(1):43-53. PubMed ID: 15809171
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Signal assignments and chemical-shift structural analysis of uniformly 13C, 15N-labeled peptide, mastoparan-X, by multidimensional solid-state NMR under magic-angle spinning.
    Fujiwara T; Todokoro Y; Yanagishita H; Tawarayama M; Kohno T; Wakamatsu K; Akutsu H
    J Biomol NMR; 2004 Apr; 28(4):311-25. PubMed ID: 14872124
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Unraveling long range residual dipolar coupling networks in strongly aligned proteins.
    Arbogast L; Majumdar A; Tolman JR
    J Magn Reson; 2013 Oct; 235():26-31. PubMed ID: 23917309
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Efficient analysis of macromolecular rotational diffusion from heteronuclear relaxation data.
    Dosset P; Hus JC; Blackledge M; Marion D
    J Biomol NMR; 2000 Jan; 16(1):23-8. PubMed ID: 10718609
    [TBL] [Abstract][Full Text] [Related]  

  • 76. 13C- 13C NOESY spectra of a 480 kDa protein: solution NMR of ferritin.
    Matzapetakis M; Turano P; Theil EC; Bertini I
    J Biomol NMR; 2007 Jul; 38(3):237-42. PubMed ID: 17554497
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Site-specific backbone amide (15)N chemical shift anisotropy tensors in a small protein from liquid crystal and cross-correlated relaxation measurements.
    Yao L; Grishaev A; Cornilescu G; Bax A
    J Am Chem Soc; 2010 Mar; 132(12):4295-309. PubMed ID: 20199098
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Direct measurement of the 15N CSA/dipolar relaxation interference from coupled HSQC spectra.
    Hall JB; Dayie KT; Fushman D
    J Biomol NMR; 2003 Jun; 26(2):181-6. PubMed ID: 12766413
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The impact of hydrogen bonding on amide 1H chemical shift anisotropy studied by cross-correlated relaxation and liquid crystal NMR spectroscopy.
    Yao L; Grishaev A; Cornilescu G; Bax A
    J Am Chem Soc; 2010 Aug; 132(31):10866-75. PubMed ID: 20681720
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Measurement of conformational constraints in an elastin-mimetic protein by residue-pair selected solid-state NMR.
    Hong M; McMillan RA; Conticello VP
    J Biomol NMR; 2002 Feb; 22(2):175-9. PubMed ID: 11883778
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.